1
|
Barati Farimani O, Cao Z, Barati Farimani A. Fast Water Desalination with a Graphene-MoS 2 Nanoporous Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29355-29363. [PMID: 38769617 PMCID: PMC11163393 DOI: 10.1021/acsami.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Energy-efficient water desalination is the key to tackle the challenges with drought and water scarcity that affect 1.2 billion people. The material and type of membrane in reverse osmosis water desalination are the key factors in their efficiency. In this work, we explored the potential of a graphene-MoS2 heterostructure membrane for water desalination, focusing on bilayer membranes and their advantages over monolayer counterparts. Through extensive molecular dynamics simulation and statistical analysis, the bilayer MoS2-graphene was investigated and compared to the monolayer of graphene and MoS2. By optimizing the heterostructure membrane, improved water flux was achieved while maintaining a high ion rejection rate. Furthermore, the study delves into the physical mechanisms underlying the superior performance of heterostructure nanopores, comparing them with circular bilayer and monolayer pores. Factors investigated include water structure, hydration shell near the membrane surface, water density, energy barrier using the potential of mean force, and porosity within the nanopore. Our findings contribute to the understanding of heterostructure membranes and their potential in enhancing the water desalination efficiency, providing valuable insights for future membrane design and optimization.
Collapse
Affiliation(s)
- Omid Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 15213 United States
| | - Zhonglin Cao
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 15213 United States
| | - Amir Barati Farimani
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 15213 United States
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Jiang J, Tu Y, Gu Z. Magnesium Ion Gated Ion Rejection through Carboxylated Graphene Oxide Nanopore: A Theoretical Study. Molecules 2024; 29:827. [PMID: 38398579 PMCID: PMC10892045 DOI: 10.3390/molecules29040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
While nanoporous graphene oxide (GO) is recognized as one of the most promising reverse osmosis desalination membranes, limited attention has been paid to controlling desalination performance through the large GO pores, primarily due to significant ion leakage resulting in the suboptimal performance of these pores. In this study, we employed a molecular dynamics simulation approach to demonstrate that Mg2+ ions, adhered to carboxylated GO nanopores, can function as gates, regulating the transport of ions (Na+ and Cl-) through the porous GO membrane. Specifically, the presence of divalent cations near a nanopore reduces the concentration of salt ions in the vicinity of the pore and prolongs their permeation time across the pore. This subsequently leads to a notable enhancement in salt rejection rates. Additionally, the ion rejection rate increases with more adsorbed Mg2+ ions. However, the presence of the adsorbed Mg2+ ions compromises water transport. Here, we also elucidate the impact of graphene oxidation degree on desalination. Furthermore, we design an optimal combination of adsorbed Mg2+ ion quantity and oxidation degree to achieve high water flux and salt rejection rates. This work provides valuable insights for developing new nanoporous graphene oxide membranes for controlled water desalination.
Collapse
Affiliation(s)
- Jianjun Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
- Department of Physics, Sanjiang College, Nanjing 210012, China
| | - Yusong Tu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Liu Y, Xie S, Wu J, Jiang L, Liu L, Li J. Revealing the confinement effects of graphitic carbon nitride nanochannels on the water desalination performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Trivedi M, Gupta R, Nirmalkar N. Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Ajalli N, Alizadeh M, Hasanzadeh A, Khataee A, Azamat J. A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation. CHEMOSPHERE 2022; 297:134183. [PMID: 35248588 DOI: 10.1016/j.chemosphere.2022.134183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by -F (fluorine) and -H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from water. The simulation results have indicated that the graphene membrane with various functional groups was impervious to DMSO molecules, and the water molecules were able to permeate across the membrane's pore with high penetrability. In this regard, the water permeability in 100 MPa was obtained at 3915.5 and 3715.3 L m-2. h-1. bar-1 for fluorinated and hydrogenated pore membranes, respectively. These functionalized graphene membranes have high efficiency, and they can be considered effective modules for water/DMSO binary mixture separations.
Collapse
Affiliation(s)
- Nima Ajalli
- Department of Chemical Engineering, Babol Noshiravani University of Technology, Babol, Iran
| | - Mahdi Alizadeh
- Department of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Abolfazl Hasanzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Jafar Azamat
- Department of Basic Sciences, Farhangian University, Tehran, Iran.
| |
Collapse
|
6
|
Transport behavior of water and ions through positively charged nanopores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
|
8
|
Mechanisms of Efficient Desalination by a Two-Dimensional Porous Nanosheet Prepared via Bottom-Up Assembly of Cucurbit[6]urils. MEMBRANES 2022; 12:membranes12030252. [PMID: 35323727 PMCID: PMC8954457 DOI: 10.3390/membranes12030252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
Many researchers have examined the desalination performance of various kinds of two-dimensional (2D) porous nanosheets prepared by top-down approaches such as forming pores on the plain based on molecular dynamics (MD) simulations. In contrast, it is rare to find MD simulations addressing the desalination performance of a 2D porous nanosheet prepared by bottom-up approaches. We investigated the desalination performance of a 2D porous nanosheet prepared by the assembly of cucurbit[6]uril (CB[6]) via MD simulation. The model 2D CB[6] nanosheet features CB[6] with the carbonyl-fringed portals of 3.9 Å and the interstitial space filled with hydrophobic linkers and dangling side chains. Our MD simulation demonstrated that the 2D porous CB[6] nanosheet possesses a 70 to 140 times higher water permeance than commercial reverse osmosis membranes while effectively preventing salt passage. The extremely high water permeance and perfect salt rejection stem from not only CB[6]’s nature (hydrophilicity, negative charge, and the right dimension for size exclusion) but also the hydrophobic and tightly filled interstitial space. We also double-checked that the extremely high water permeance was attributable to only CB[6]’s nature, not water leakage, by contrasting it with a 2D nanosheet comprising CB[6]-spermine complexes. Lastly, this paper provides a discussion on a better cucurbituril homologue to prepare a next-generation desalination membrane possessing great potential to such an extent to surpass the 2D porous CB[6] nanosheet based on quantum mechanics calculations.
Collapse
|
9
|
Yu Y, Zhang K. Size-sieving separation of hard-sphere gases at low concentrations through cylindrically porous membranes. SOFT MATTER 2021; 17:10025-10031. [PMID: 34661595 DOI: 10.1039/d1sm01158h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membranes are compelling devices for many industrial separation processes, which are all subject to the intrinsic permeability-selectivity tradeoff. A general strategy to enhance separation performance is to reduce the pore size distribution and, ideally, make the membrane isoporous. In this study, we focus on a minimal model for regularly porous membranes, which consists of hard spheres moving through cylindrical pores. The collision dynamics is solved exactly and implemented in nonequilibrium event-driven molecular dynamics simulations. For such size-sieving porous membranes, we show that the permeability P of hard spheres of size σ through cylindrical pores of size d follows the hindered diffusion mechanism due to size exclusion as P ∝ (1 - σ/d)2. According to this law, the separation of binary mixtures of large and small particles exhibits a linear relationship between α-1/2 and P-1/2, where α and P are the selectivity and permeability of the smaller particle, respectively. The mean permeability through polydisperse pores is the average of the permeabilities of individual pores, weighted by the fraction of the single pore area over the total pore area.
Collapse
Affiliation(s)
- Yue Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China.
| | - Kai Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China.
- Data Science Research Center (DSRC), Duke Kunshan University, Kunshan, Jiangsu, 215300, China
| |
Collapse
|
10
|
Priyadarsini A, Mallik BS. Amphiphilicity of Intricate Layered Graphene/g-C 3N 4 Nanosheets. J Phys Chem B 2021; 125:11697-11708. [PMID: 34664957 DOI: 10.1021/acs.jpcb.1c05609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hybrid heterostructure of the tri-s-triazine form of graphitic carbon nitride (g-C3N4), a stable two-dimensional material, results from intricate layer formation with graphene. In this material, g-C3N4, an amphiphilic material, stabilizes Pickering emulsions as an emulsifier and can effectively disperse graphene. Due to the various technological applications of the hybrid nanosheets in an aqueous environment, it is essential to study the interaction of water molecules with graphene and g-C3N4 (Gr/g-C3N4)-combined heterostructure. Although few studies have been performed signifying the water orientation in the interfacial layer, we find that there is a lack of detailed studies using various dynamical and structural properties of the interfacial water molecules. The interface of the Gr/g-C3N4 hybrid structure, one of the rarely found amphiphilic interfaces (on the g-C3N3 side), is appropriate for exploring the water affinity due to the availability of heterogeneous interfacial aqueous interactions. We adopted classical molecular dynamics simulations using two models for water molecules to study the structure and dynamics of an aqueous interface. We have correlated the structural properties to dynamics and spectral properties to understand the overall behavior of the amphiphilic interface. Our results branch into two significant hydrogen bond (HB) properties in HB count and HB strength among the water molecules in the different layers. The HB counts in the different layers of water are correlated using the average distance distribution (PrO4), tetrahedral order parameters, HB donor/acceptor count, and total HBs per water molecule. A conspicuous difference is found in the HB count and related dynamics of the system. The HB lifetime and diffusion coefficient hint at the equivalent strength of HBs in the different layers. All the findings conclude that the amphiphilicity of the Gr/g-C3N4 interface can help in understanding various interfacial physical and chemical processes.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
11
|
Cao Z, Markey G, Barati Farimani A. Ozark Graphene Nanopore for Efficient Water Desalination. J Phys Chem B 2021; 125:11256-11263. [PMID: 34591487 DOI: 10.1021/acs.jpcb.1c06327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nanoporous graphene membrane is crucial to energy-efficient reverse osmosis water desalination given its high permeation rate and ion selectivity. However, the ion selectivity of the common circular graphene nanopore is dependent on the pore size and scales inversely with the water permeation rate. Larger, circular graphene nanopores give rise to the high water permeation rate but compromise the ability to reject ions. Therefore, the pursuit of a higher permeation rate while maintaining high ion selectivity can be challenging. In this work, we discover that the geometry of graphene nanopore can play a significant role in its water desalination performance. We demonstrate that the ozark graphene nanopore, which has an irregular slim shape, can reject over 12% more ions compared with a circular nanopore with the same water permeation rate. To reveal the physical reason behind the outstanding performance of the ozark nanopore, we compared it with circular, triangular, and rhombic pores from perspectives including interfacial water density, energy barrier, water/ion distribution in pores, the ion-water RDF in pores, and the hydraulic diameter. The ozark graphene nanopore further explores the potential of graphene for efficient water desalination.
Collapse
Affiliation(s)
- Zhonglin Cao
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Greta Markey
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Oviroh PO, Jen TC, Ren J, Mohlala LM, Warmbier R, Karimzadeh S. Nanoporous MoS 2 Membrane for Water Desalination: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7127-7137. [PMID: 34048656 DOI: 10.1021/acs.langmuir.1c00708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molybdenum disulfide (MoS2), a two-dimensional (2D) material, promises better desalination efficiency, benefiting from the small diffusion length. While the monolayer nanoporous MoS2 membrane has great potential in the reverse osmosis (RO) desalination membrane, multilayer MoS2 membranes are more feasible to synthesize and economical than the monolayer MoS2 membrane. Building on the monolayer MoS2 membrane knowledge, the effects of the multilayer MoS2 membrane in water desalination were explored, and the results showed that increasing the pore size from 3 to 6 Å resulted in higher permeability but with lower salt rejection. The salt rejection increases from 85% in a monolayer MoS2 membrane to about 98% in a trilayer MoS2 membrane. When averaged over all three types of membranes studied, the ions rejection follows the trend of trilayer > bilayer > monolayer. Besides, a narrow layer separation was found to play an important role in the successful rejection of salt ions in bilayer and trilayer membranes. This study aims to provide a collective understanding of this high permiselective MoS2 membrane's realization for water desalination, and the findings showed that the water permeability of the MoS2 monolayer membrane was in the order of magnitude greater than that of the conventional RO membrane and the nanoporous MoS2 membrane can have an important place in the purification of water.
Collapse
Affiliation(s)
- Peter Ozaveshe Oviroh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Lesego M Mohlala
- Department of Metallurgical Engineering, University of Johannesburg, Doornfontein, 2006, Johannesburg, South Africa
| | - Robert Warmbier
- Department of Physics, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| |
Collapse
|