1
|
Uredat S, Gujare A, Runge J, Truzzolillo D, Oberdisse J, Hellweg T. A review of stimuli-responsive polymer-based gating membranes. Phys Chem Chem Phys 2024; 26:2732-2744. [PMID: 38193196 DOI: 10.1039/d3cp05143a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The formation and properties of smart (stimuli-responsive) membranes are reviewed, with a special focus on temperature and pH triggering of gating to water, ions, polymers, nanoparticles, or other molecules of interest. The review is organized in two parts, starting with all-smart membranes based on intrinsically smart materials, in particular of the poly(N-isopropylacrylamide) family and similar polymers. The key steps of membrane fabrication are discussed, namely the deposition into thin films, functionalization of pores, and the secondary crosslinking of pre-existing microgel particles into membranes. The latter may be free-standing and do not necessitate the presence of a porous support layer. The temperature-dependent swelling properties of polymers provide a means of controlling the size of pores, and thus size-sensitive gating. Throughout the review, we highlight "positive" (gates open) or "negative" (closed) gating effects with respect to increasing temperature. In the second part, the functionalization of porous organic or inorganic membranes of various origins by either microgel particles or linear polymer brushes is discussed. In this case, the key steps are the adsorption or grafting mechanisms. Finally, whenever provided by the authors, the suitability of smart gating membranes for specific applications is highlighted.
Collapse
Affiliation(s)
- Stefanie Uredat
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Aditi Gujare
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Jonas Runge
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France.
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
2
|
Maity S, Gaur D, Mishra B, Dubey NC, Tripathi BP. Bactericidal and biocatalytic temperature responsive microgel based self-cleaning membranes for water purification. J Colloid Interface Sci 2023; 642:129-144. [PMID: 37003009 DOI: 10.1016/j.jcis.2023.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The present study focuses on creating an antimicrobial and biocatalytic smart gating membrane by synthesizing unique core-shell microgels. The core-shell microgels are synthesized by grafting short chains of poly(ethylenimine) (PEI) onto a poly((N-isopropyl acrylamide)-co-glycidyl methacrylate)) (P(NIPAm-co-GMA)) core. Subsequently, the produced microgels are utilized as a substrate for synthesizing and stabilizing silver nanoparticles (Ag NPs) through an in-situ approach. These Ag NPs immobilized microgels are then suction filtered over a polyethylene terephthalate (PET) track-etched support to create cross-linked composite microgel membranes (CMMs). After structural and permeation characterization of the prepared CMMs, the laccase enzyme is then covalently grafted to the surface of the membrane and tested for its effectiveness in degrading Reactive red-120 dye. The laccase immobilized biocatalytic CMMs show effective degradation of the Reactive red-120 by 71%, 48%, and 34% at pH 3, 4, and 5, respectively. Furthermore, the immobilized laccase enzyme showed better activity and stability in terms of thermal, pH, and storage compared to the free laccase, leading to increased reusability. The unique combination of Ag NPs and laccase on a thermoresponsive microgel support resulted in a responsive self-cleaning membrane with excellent antimicrobial and dye degradation capabilities for environmentally friendly separation technology.
Collapse
|
3
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Toor R, Neujahr Copstein A, Trébuchet C, Goudeau B, Garrigue P, Lapeyre V, Perro A, Ravaine V. Responsive microgels-based colloidosomes constructed from all-aqueous pH-switchable coacervate droplets. J Colloid Interface Sci 2023; 630:66-75. [DOI: 10.1016/j.jcis.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022]
|
5
|
Teng L, Yue C, Zhang G. Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities. J Colloid Interface Sci 2023; 630:416-429. [DOI: 10.1016/j.jcis.2022.09.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
6
|
Sabadasch V, Dirksen M, Fandrich P, Cremer J, Biere N, Anselmetti D, Hellweg T. Pd Nanoparticle-Loaded Smart Microgel-Based Membranes as Reusable Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49181-49188. [PMID: 36256601 DOI: 10.1021/acsami.2c14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus. Furthermore, we compare the catalytic activity of the membrane with the corresponding suspended colloidal nanoparticle microgel hybrids. For this purpose, the reduction of 4-nitrophenol is an established model reaction to quantify the catalytic activity by UV-vis spectroscopy. The membrane is embedded inside a continuous stirred tank reactor equipped for continuous monitoring of the reaction progress. Although catalysis with membranes shows lower catalytic activity than freely dispersed particles, membranes allow straightforward separation and recycling of the catalyst. The fabricated membranes in this work show no decrease in catalytic activity between several cycles, unlike free particles. The feasible and durable deposition of catalytically active inter-cross-linked microgel particles on commercial nylon meshes as supporting scaffolds, as demonstrated in this work, is promising for up-scaling of continuous industrial processes.
Collapse
Affiliation(s)
- Viktor Sabadasch
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Pascal Fandrich
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Julian Cremer
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Niklas Biere
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics & Applied Nanosciences, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|
7
|
Santi M, Saha P, Walkowiak JJ, Rubner J, Wessling M, Pich A. In-Line Characterization of the Temperature-Responsive Behavior of Surface-Bound Microgel Coatings by QCM-D: A Novel Strategy for Protein Repellence Evaluation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10907-10916. [PMID: 35179345 DOI: 10.1021/acsami.1c21814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to develop a new method to evaluate the protein repellency of microgel coatings. Compared to traditional protocols for surface analysis, QCM has the advantage of a real-time quantitative approach with high sensitivity, allowing us to describe variations of the adsorbed mass with unprecedented accuracy. To enable the detectability of the film throughout the whole operational temperature interval, a poly(N-isopropylacrylamide-co-glycidyl methacrylate) p(NIPAm-co-GMA) microgel monolayer with defined thickness and rigidity was designed. Covalent adhesion of the film to the silica surface was achieved by epoxy-thiol click chemistry and tested for repeated temperature cycles, showing substantial reproducibility. Further functionalization of microgel surfaces by grafting polyzwitterionic chains remarkably improved the protein repellence leaving the strong surface adhesion unaltered. Before and after exposure to fluorescein-tagged bovine serum albumin (FITC-BSA), the coatings showed identical responsive behavior, proving the absence of protein deposition. In nonrepellent coatings, QCM monitoring instead displayed a characteristic shift in the volume phase transition (VPT), pointing out the effect of adsorbed proteins on the swelling behavior of pNIPAm. The combination of QCM-D and UV-visible (UV-vis) was used to evaluate the effect of increasing surface coverage, enabling to distinguish between the protein deposition occurring over the coated and the uncoated portion of the sensor.
Collapse
Affiliation(s)
- Marta Santi
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen 6167 RD, the Netherlands
| | - Jens Rubner
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Matthias Wessling
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen 6167 RD, the Netherlands
| |
Collapse
|
8
|
Cross-Linking Combined with Surfactant Bilayer Assembly Enhances the Hydrophilic and Antifouling Properties of PTFE Microfiltration Membranes. SEPARATIONS 2021. [DOI: 10.3390/separations9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition and then used Polyvinyl alcohol (PVA)/citric acid (CA) cross-linked coatings for second layer deposition. The Scanning Electron Microscope (SEM) results showed that the fibers and nodes of the modified PTFE microfiltration membrane were coated with PVA/CA hydrophilic coating. FT-IR Spectromete and X-ray photoelectron spectrometer (XPS) analysis results confirmed that crosslinking of PVA and CA occurred and that PEGML and PVA/CA were successfully deposited onto the membrane surface. The modification conditions were optimized by hydrophilicity testing, and the best hydrophilicity of the modified membrane was achieved when the crosslinking content of PEGML was 2 g·L−1, PVA was 5 g·L−1, and CA was 2 g·L−1. PTFE microfiltration membranes modified by the optimal conditions achieved a water flux of 396.9 L·m−2·h−1 (three times that of the original membrane) at low operating pressures (0.05 MPa), and the contact angle decreased from 120° to 40°. Meanwhile, the modified PTFE microfiltration membrane has improved contamination resistance and good stability of the hydrophilic coating.
Collapse
|
9
|
Hoshino Y, Gyobu T, Imamura K, Hamasaki A, Honda R, Horii R, Yamashita C, Terayama Y, Watanabe T, Aki S, Liu Y, Matsuda J, Miura Y, Taniguchi I. Assembly of Defect-Free Microgel Nanomembranes for CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30030-30038. [PMID: 34139838 DOI: 10.1021/acsami.1c06447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of robust and thin CO2 separation membranes that allow fast and selective permeation of CO2 will be crucial for rebalancing the global carbon cycle. Hydrogels are attractive membrane materials because of their tunable chemical properties and exceptionally high diffusion coefficients for solutes. However, their fragility prevents the fabrication of thin defect-free membranes suitable for gas separation. Here, we report the assembly of defect-free hydrogel nanomembranes for CO2 separation. Such membranes can be prepared by coating an aqueous suspension of colloidal hydrogel microparticles (microgels) onto a flat, rough, or micropatterned porous support as long as the pores are hydrophilic and the pore size is smaller than the diameter of the microgels. The deformability of the microgel particles enables the autonomous assembly of defect-free 30-50 nm-thick membrane layers from deformed ∼15 nm-thick discoidal particles. Microscopic analysis established that the penetration of water into the pores driven by capillary force assists the assembly of a defect-free dense hydrogel layer on the pores. Although the dried films did not show significant CO2 permeance even in the presence of amine groups, the permeance dramatically increased when the membranes are adequately hydrated to form a hydrogel. This result indicated the importance of free water in the membranes to achieve fast diffusion of bicarbonate ions. The hydrogel nanomembranes consisting of amine-containing microgel particles show selective CO2 permeation (850 GPU, αCO2/N2 = 25) against post-combustion gases. Acid-containing microgel membranes doped with amines show highly selective CO2 permeation against post-combustion gases (1010 GPU, αCO2/N2 = 216) and direct air capture (1270 GPU, αCO2/N2 = 2380). The membrane formation mechanism reported in this paper will provide insights into the self-assembly of soft matters. Furthermore, the versatile strategy of fabricating hydrogel nanomembranes by the autonomous assembly of deformable microgels will enable the large-scale manufacturing of high-performance separation membranes, allowing low-cost carbon capture from post-combustion gases and atmospheric air.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Tomohiro Gyobu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazushi Imamura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Hamasaki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryutaro Honda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoga Horii
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chie Yamashita
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Yuki Terayama
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Watanabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Shoma Aki
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Carbon Cycle Lab., Inc., 4-1 Kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Yida Liu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Matsuda
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ikuo Taniguchi
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Particle movements provoke avalanche-like compaction in soft colloid filter cakes. Sci Rep 2021; 11:12836. [PMID: 34145324 PMCID: PMC8213765 DOI: 10.1038/s41598-021-92119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.
Collapse
|
11
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|
12
|
Nasimova IR, Rudyak VY, Doroganov AP, Kharitonova EP, Kozhunova EY. Microstructured Macromaterials Based on IPN Microgels. Polymers (Basel) 2021; 13:polym13071078. [PMID: 33805579 PMCID: PMC8036913 DOI: 10.3390/polym13071078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
This study investigates the formation of microstructured macromaterials from thermo- and pH-sensitive microgels based on interpenetrating networks of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA). Macromaterials are produced as a result of the deposition of microgel particles and subsequent crosslinking of polyacrylic acid subnetworks to each other due to the formation of the anhydride bonds during annealing. Since both PNIPAM and PAA are environment-sensitive polymers, one can expect that their conformational state during material development will affect its resulting properties. Thus, the influence of conditions of preparation for annealing (pH of the solution, the temperature of preliminary drying) on the swelling behavior, pH- and thermosensitivity, and macromaterial inner structure was investigated. In parallel, the study of the effect of the relative conformations of the IPN microgel subnetworks on the formation of macromaterials was carried out by the computer simulations method. It was shown that the properties of the prepared macromaterials strongly depend both on the temperature and pH of the PNIPAM-PAA IPN microgel dispersions. This opens up new opportunities to obtain materials with pre-chosen characteristics and environmental sensitivity.
Collapse
Affiliation(s)
- Irina Rashitovna Nasimova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
- Russian Academy of Science, 119991 Moscow, Russia
- Correspondence:
| | - Vladimir Yurievich Rudyak
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Anton Pavlovich Doroganov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Elena Petrovna Kharitonova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
| | - Elena Yurievna Kozhunova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.R.); (A.P.D.); (E.P.K.); (E.Y.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Dirksen M, Brändel T, Großkopf S, Knust S, Bookhold J, Anselmetti D, Hellweg T. UV cross-linked smart microgel membranes as free-standing diffusion barriers and nanoparticle bearing catalytic films. RSC Adv 2021; 11:22014-22024. [PMID: 35480797 PMCID: PMC9036384 DOI: 10.1039/d1ra03528b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
In this study we use poly(N-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes via resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy. Cross-linkable microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and are subsequently UV-cross-linked to obtain smart membranes exhibiting switchable resistance.![]()
Collapse
Affiliation(s)
- Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Timo Brändel
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sören Großkopf
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sebastian Knust
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Johannes Bookhold
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
14
|
Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58223-58238. [PMID: 33331763 DOI: 10.1021/acsami.0c17427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core-shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core-shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Marta Santi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Meike Emondts
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Hannah Roth
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | | | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Matthias Wessling
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Maastricht 6229 GT, The Netherlands
| |
Collapse
|