1
|
Chen X, Boffa V, Ma X, Magnacca G, Calza P, Wang D, Meng F, Nielsen AH, Deganello F, Li K, Yue Y. Zeolite Imidazolate Frameworks-8@SiO 2-ZrO 2 Crystal-Amorphous Hybrid Core-Shell Structure as a Building Block for Water Purification Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11835-11848. [PMID: 38382008 PMCID: PMC10921995 DOI: 10.1021/acsami.3c19559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising materials for water purification membranes, owing to their uniform microporous structures and chemical functionalities. Here, we report a simple procedure for depositing MOF-based nanofiltration membranes on commercial TiO2 ceramic tubular supports, completely avoiding the use of dispersants or binders. Zeolite imidazolate frameworks-8 (ZIF-8) nanocrystals were synthesized in methanol at room temperature and subsequently coated with an amorphous SiO2-ZrO2 gel to generate a dispersion of ZIF-8@SiO2-ZrO2 core-shell nanoparticles. The amorphous SiO2-ZrO2 gel served as a binding agent for the ZIF-8 nanocrystals, thus forming a defect-free continuous membrane layer. After repeating the coating twice, the active layer had a thickness of 0.96 μm, presenting a rejection rate >90% for the total organic carbon in an aquaculture effluent and in a wastewater treatment plant, while reducing the concentration of trimethoprim, here used as a target pollutant. Moreover, the oxide gel provided the MOF-based active layer with good adhesion to the support and enhanced its hydrophilicity, resulting in a membrane with excellent mechanical stability and resistance to fouling during the crossflow filtration of the real wastewater samples. These results implied the high potential of the MOF-based nanocomposite membrane for effective treatment of actual wastewater streams.
Collapse
Affiliation(s)
- Xinxin Chen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Vittorio Boffa
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Xianzheng Ma
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Paola Calza
- Dipartimento
di Chimica, Università di Torino, Torino 10125, Italy
| | - Deyong Wang
- Department
of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Fanpeng Meng
- Shandong
Guiyuan Advanced Ceramic Co., Ltd (Sicer), Zibo 255086, China
| | | | - Francesca Deganello
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Palermo 90146, Italy
| | - Kang Li
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
2
|
Shin H, Chaudhari S, Jeong Y, Jo S, Shon M, Nam S, Park Y. Synergistic pervaporation dehydration of ethanol/water mixture: Exploring the potential of a covalently designed hybrid membrane structure of polyacrylic acid grafted carbon nitride and polyvinyl alcohol. CHEMOSPHERE 2024; 346:140593. [PMID: 37931710 DOI: 10.1016/j.chemosphere.2023.140593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Polyacrylic acid (PAA) grafted CN sheet (P-g-CN) was synthesized to enhance the dispersive properties of carbon nitride (CN) in the membrane. A successful PAA grafting to the CN was confirmed from FTIR, TGA, and Zeta potential and XRD analyses. The A PVA membrane embedded P-g-CN, including a covalently constructed polymer-filler network, was developed to separate ethanol-water mixtures using pervaporation (PV). XPS study has confirmed a covalent attachment of P-g-CN sheets to the PVA matrix. Thereby, a defect-free membrane matrix was observed in the FESEM analysis. A 10 wt% loaded PVA-P-g-CN10 composite membrane was compared to the pristine PVA membrane, demonstrating improved PV dehydration performance. The flux decreased from 0.21 kg/m2h of pristine PVA membrane to 0.17 kg/m2h of PVA-P-g-CN10 membrane, while the separation factor improved from 49 to 176 in a 90/10 wt % ethanol/water feed at 40 °C. This improvement can be attributed to the selective diffusion of water through the P-g-CN interlayer spacing and tiny triangular nanopores in the s-triazine network, along with their dispersibility in the PVA matrix, resulting in well-ordered membrane morphology. Furthermore, PVA-P-g-CN10 exhibited higher water permeance (43.31-86.07 GPU) than ethanol (1.18-10.47 GPU) as the feed temperature increased from 30 to 70 °C, suggesting P-g-CN successfully inhibits swelling in the feed solution through proper interaction with PVA. In a long-term PV test lasting 250 h, the PVA-P-g-CN10 membrane displayed excellent structural stability and maintained its performance.
Collapse
Affiliation(s)
- HyeonTae Shin
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - YeWon Jeong
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - Sewook Jo
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University, San 100, Yongdang-Dong, Nam-Gu, Busan, 608-739, South Korea.
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, South Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, South Korea
| |
Collapse
|
3
|
Wang Z, Zheng H, Chen J, Wang W, Sun F, Cao Y. Effect of Crosslinking Conditions on the Transport of Protons and Methanol in Crosslinked Polyvinyl Alcohol Membranes Containing the Phosphoric Acid Group. Polymers (Basel) 2023; 15:4198. [PMID: 37959877 PMCID: PMC10648814 DOI: 10.3390/polym15214198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
In this investigation, we systematically explored the intricate relationship between the structural attributes of polyvinyl alcohol (PVA) membranes and their multifaceted properties relevant to fuel cell applications, encompassing diverse crosslinking conditions. Employing the solution casting technique, we fabricated crosslinked PVA membranes by utilizing phosphoric acid (PA) as the crosslinking agent, modulating the crosslinking temperature across a range of values. This comprehensive approach aimed to optimize the selection of crosslinking parameters for the advancement of crosslinked polymer materials tailored for fuel cell contexts. A series of meticulously tailored crosslinked PVA membranes were synthesized, each varying in PBTCA content (5-30 wt.%) to establish a systematic framework for elucidating chemical interactions, morphological transformations, and physicochemical attributes pertinent to fuel cell utilization. The manipulation of crosslinking agent concentration and crosslinking temperature engendered a discernible impact on the crosslinking degree, leading to a concomitant reduction in crystallinity. Time-resolved attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was harnessed to evaluate the dynamics of liquid water adsorption and ionomer swelling kinetics within the array of fabricated PVA films. Notably, the diffusion of water within the PVA membranes adhered faithfully to Fick's law, with discernible sensitivity to the crosslinking conditions being implemented. Within the evaluated membranes, proton conductivities exhibited a span of between 10-3 and 10-2 S/cm, while methanol permeabilities ranged from 10-8 to 10-7 cm2/s. A remarkable revelation surfaced during the course of this study, as it became evident that the structural attributes and properties of the PVA films, under the influence of distinct crosslinking conditions, underwent coherent modifications. These changes were intrinsically linked to alterations in crosslinking degree and crystallinity, reinforcing the interdependence of these parameters in shaping the characteristics of PVA films intended for diverse fuel cell applications.
Collapse
Affiliation(s)
- Zhiwei Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Z.W.); (H.Z.); (Y.C.)
| | - Hao Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Z.W.); (H.Z.); (Y.C.)
| | - Jinyao Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Z.W.); (H.Z.); (Y.C.)
| | - Wei Wang
- Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China; (W.W.); (F.S.)
| | - Furui Sun
- Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China; (W.W.); (F.S.)
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Z.W.); (H.Z.); (Y.C.)
| |
Collapse
|
4
|
Hsu CH, Yu HY, Lee HJ, Wu PH, Huang SJ, Lee JS, Yu TY, Li YP, Kang DY. Fast Water Transport in UTSA-280 via a Knock-Off Mechanism. Angew Chem Int Ed Engl 2023; 62:e202309874. [PMID: 37574451 DOI: 10.1002/anie.202309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Water and other small molecules frequently coordinate within metal-organic frameworks (MOFs). These coordinated molecules may actively engage in mass transfer, moving together with the transport molecules, but this phenomenon has yet to be examined. In this study, we explore a unique water transfer mechanism in UTSA-280, where an incoming water molecule can displace a coordinated molecule for mass transfer. We refer to this process as the "knock-off" mechanism. Despite UTSA-280 possessing one-dimensional channels, the knock-off transport enables water movement along the other two axes, effectively simulating a pseudo-three-dimensional mass transfer. Even with a relatively narrow pore width, the knock-off mechanism enables a high water flux in the UTSA-280 membrane. The knock-off mechanism also renders UTSA-280 superior water/ethanol diffusion selectivity for pervaporation. To validate this unique mechanism, we conducted 1 H and 2 H solid-state NMR on UTSA-280 after the adsorption of deuterated water. We also derived potential energy diagrams from the density functional theory to gain atomic-level insight into the knock-off and the direct-hopping mechanisms. The simulation findings reveal that the energy barrier of the knock-off mechanism is marginally lower than the direct-hopping pathway, implying its potential role in enhancing water diffusion in UTSA-280.
Collapse
Affiliation(s)
- Cheng-Hsun Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsin-Yu Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho Jun Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
5
|
Wang SN, Huang Z, Wang JT, Ru XF, Teng LJ. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
6
|
Yuan H, Bao C, Hao R, Lu J. The dehydration performance and sorption behavior of PVA/silica hybrid pervaporative membrane. Aust J Chem 2022. [DOI: 10.1071/ch22106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A polyvinyl alcohol (PVA)/SiO2 organic-inorganic hybrid membrane was fabricated, using PVA as the basic material, SiO2 nanoparticles as the inorganic material, γ-(2,3)-glycidoxy propyl trimethoxysilane (GPTMS) and 3-aminopropyl triethoxysilane (APTEOS) as the second modified agents. The dehydration performance of PVA-SiO2/polyacrylonitrile (PAN) composite membrane to ethyl acetate (EA)/H2O, EA/ethanol (EtOH)/H2O and EA/EtOH/acetic acid (HAc)/H2O solutions was investigated. After modification of the second coupling agent of APTEOS or GPTMS, PVA-SiO2/PAN composite membrane had the better dehydration performance to these aqueous solutions. When dehydrating PVA-SiO2/PAN composite membrane modified by GPTMS (M5 membrane) in EA/H2O binary solution (98/2, wt%) at 40°C, the separation factor and the total permeation flux were 5245 and 293.9 g m−2 h−1, respectively. The preparation method of PVA/SiO2 membrane through adding the second coupling agent was simple, it had good dehydration performance and has excellent application prospects. The sorption behavior of PVA/SiO2 hybrid membrane was systematically studied, providing sufficient data for studying the separation mechanism of pervaporative membrane. The degree of swelling (DS) and the sorption selectivity of the membrane in different feed compositions and temperatures were measured to determine the static sorption of membrane. Dynamic sorption more clearly reflects the sorption and swelling processes of the membrane, and the dynamic sorption curves of the membrane in EA aqueous solutions were obtained. The sorption behavior of membrane to permeate components was studied by ATR-FTIR. Changes in the characteristic peaks for the permeate components and membrane indicated the sorption behavior of the membrane.
Collapse
|
7
|
Dou Y, Yi G, Huang L, Ma Y, Li C, Zhu A, Liu Q, Zhang Q. Hollow fiber composite membranes of poly(paraterphenyl-3-bromo-1,1,1-trifluoroacetone) and PVA/glycine for ethanol dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xiong Y, Deng N, Wu X, Zhang Q, Liu S, Sun G. De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced interfacial compatibility and pervaporation performance in mixed matrix membranes applying for ethanol dehydration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Polotskaya G, Goikhman M, Podeshvo I, Loretsyan N, Saprykina N, Gofman I, Tian N, Dubovenko R, Pulyalina A. Prospects of co‐poly(biquinoline‐hydrazide‐imide)s for separation of benzene‐isopropanol mixture via pervaporation. J Appl Polym Sci 2022. [DOI: 10.1002/app.51646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Galina Polotskaya
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
- Saint Petersburg State University Institute of Chemistry Saint Petersburg Russia
| | - Mikhail Goikhman
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
| | - Irina Podeshvo
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
| | - Nairi Loretsyan
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
| | - Natalia Saprykina
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds Russian Academy of Sciences Saint Petersburg Russia
| | - Nadezhda Tian
- Saint Petersburg State University Institute of Chemistry Saint Petersburg Russia
| | - Roman Dubovenko
- Saint Petersburg State University Institute of Chemistry Saint Petersburg Russia
| | - Alexandra Pulyalina
- Saint Petersburg State University Institute of Chemistry Saint Petersburg Russia
| |
Collapse
|
10
|
PVA-Based MMMs for Ethanol Dehydration via Pervaporation: A Comparison Study between Graphene and Graphene Oxide. SEPARATIONS 2022. [DOI: 10.3390/separations9020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two different types of 2D nanosheets, including hydrophobic graphene (GR) and hydrophilic graphene oxide (GO), were filled into poly (vinyl alcohol) (PVA) polymers to prepare mixed matrix membranes (MMMs) for ethanol dehydration via pervaporation. The relationship between the physical/chemical properties of graphene and pervaporation performance of MMMs was investigated by a comparison of GR/PVA and GO/PVA MMMs in microstructure and PV performance. The incorporation of GO nanosheets into PVA reduced PVA crystallinity and enhanced the membrane hydrophilicity, while the incorporation of GR into PVA led to the opposite results. The incorporation of GR/GO into PVA depressed the PVA membrane swelling degree, and the incorporation of GR showed a more obvious depression effect. GR/PVA MMMs showed a much higher separation factor than GO/PVA MMMs, while they exhibited a much lower permeation flux than GO/PVA MMMs and pristine PVA membranes. The huge difference in microstructure and performance between GO/PVA and GR/PVA MMMs was strongly associated with the oxygen-containing groups on graphene lamellae. The higher permeation flux of GO/PVA MMMs was ascribed to the facilitated transport of water molecules induced by oxygen-containing groups and exclusive channels provided by GO lamellae, while the much lower permeation flux and higher separation factor GR/PVA MMMs was resulted from the smaller GR interplanar spacing (0.33 nm) and hydrophobicity as well as barrier effect of GR lamellae on the sorption and diffusion of water molecules. It was presumed that graphene intercalated with an appropriate number of oxygen-containing groups might be a good choice to prepare PVA-based MMMs for ethanol dehydration, which would combine the advantages of GR’s high interlayer diffusion selectivity and GO’s high permeation properties. The investigation might open a door to achieve both of high permeation flux and separation factor of PVA-based MMMs by tuning the microstructure of graphene.
Collapse
|
11
|
Lee S, Wang G, Ji N, Zhang M, Wang D, Sun L, Meng W, Zheng Y, Li Y, Wu Y. Synthesis, characterizations and kinetics of MOF‐5 as herbicide vehicle and its controlled release in PVA/ST biodegradable composite membranes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shaoxiang Lee
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Guohui Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Nana Ji
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Meng Zhang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Lishui Sun
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Wenqiao Meng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuqi Zheng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yanxin Li
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuting Wu
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| |
Collapse
|
12
|
Li S, Liu Y, Wong DA, Yang J. Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO 2 Separation. Polymers (Basel) 2021; 13:2539. [PMID: 34372141 PMCID: PMC8348380 DOI: 10.3390/polym13152539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Since the second industrial revolution, the use of fossil fuels has been powering the advance of human society. However, the surge in carbon dioxide (CO2) emissions has raised unsettling concerns about global warming and its consequences. Membrane separation technologies have emerged as one of the major carbon reduction approaches because they are less energy-intensive and more environmentally friendly compared to other separation techniques. Compared to pure polymeric membranes, mixed matrix membranes (MMMs) that encompass both a polymeric matrix and molecular sieving fillers have received tremendous attention, as they have the potential to combine the advantages of both polymers and molecular sieves, while cancelling out each other's drawbacks. In this review, we will discuss recent advances in the development of MMMs for CO2 separation. We will discuss general mechanisms of CO2 separation in an MMM, and then compare the performances of MMMs that are based on zeolite, MOF, metal oxide nanoparticles and nanocarbons, with an emphasis on the materials' preparation methods and their chemistries. As the field is advancing fast, we will particularly focus on examples from the last 5 years, in order to provide the most up-to-date overview in this area.
Collapse
Affiliation(s)
- Sipei Li
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| | | | | | - John Yang
- Aramco Americas—Boston Research Center, Cambridge, MA 02139, USA; (Y.L.); (D.A.W.)
| |
Collapse
|