1
|
Wang Y, Ren Z, Zheng J, Wang J, Yuan H, Liu Y, Liu T, Luo J, Nai J, Tao X. First-Principles Study on Polymer Electrolyte Interface Engineering for Lithium Metal Anodes. CHEMSUSCHEM 2024; 17:e202400738. [PMID: 38837662 DOI: 10.1002/cssc.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Modifying the interface between the lithium metal anode (LMA) and the electrolyte is crucial for achieving high-performance lithium metal batteries (LMBs). Recent research indicates that altering Li-metal interfaces with polymer coatings is an effective approach to extend LMBs' cycling lifespan. However, the physical properties of these polymer-Li interfaces have not yet been fully investigated. Therefore, the structural stability, electronic conductivity, and ionic conductivity of polymer-Li interfaces were examined based on first-principles calculations in this study. Several representative polymer compounds utilized in LMBs were assessed, including polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyethylene oxide (PEO). Our research revealed that lithium fluoride is formed upon fluoropolymer degradation, explaining previously observed experimental results. Polymers containing nitrile groups exhibit strong adhesion to lithium metal, facilitating the formation of the stable interface layer. Regarding electronic conductivity, the fluoropolymers preserve a good insulating property, which diminished marginally in the presence of lithium, but that of PAN and PEO significantly reduces. Additionally, lithium diffusion on PTFE and PEO demonstrates low diffusion barriers and high coefficients, enabling easy transportation. Overall, our investigation reveals that the interfaces formed between various polymers and LMA have distinct characteristics, providing new fundamental insights for designing composites with tailored interface properties.
Collapse
Affiliation(s)
- Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Huzhou, 313000, China
| | - Ziang Ren
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianhui Zheng
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juncheng Wang
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, 324000, China
| | - Huadong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tiefeng Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianmin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyong Tao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Wu XW, Seenivasan M, Karuppiah C, Zhang BR, Shih JY, James Li YJ, Hung TF, Chien WC, Ramaraj SK, Jose R, Yang CC. Fabrication electro-spun Poly(vinyl alcohol)-Melamine nonwoven membrane composite separator for high-power lithium-ion batteries. Heliyon 2024; 10:e34436. [PMID: 39082013 PMCID: PMC11284413 DOI: 10.1016/j.heliyon.2024.e34436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Current commercial separators used in lithium-ion batteries have inherent flaws, especially poor thermal stability, which pose substantial safety risks. This study introduces a high-safety composite membrane made from electrospun poly(vinyl alcohol)-melamine (PVAM) and polyvinylidene fluoride (PVDF) polymer solutions via a dip coating method, designed for high-voltage battery systems. The poly(vinyl alcohol) and melamine components enhance battery safety, while the PVDF coating improves lithium-ion conductivity. The dip-coated PVDF/Esp-PVAM composite separators were evaluated for electrolyte uptake, contact angle, thermal stability, porosity, electrochemical stability and ionic conductivity. Notably, our Dip 1 % PVDF@Esp-PVAM composite separator exhibited excellent wettability and a lithium-ion conductivity of approximately 7.75 × 10⁻⁴ S cm⁻1 at room temperature. These separators outperformed conventional PE separators in half-cells with Ni-rich NCM811 cathodes, showing exceptional cycling stability with 93.4 % capacity retention after 100 cycles at 1C/1C, as compared to 84.8 % for PE separators. Our Dip 1 % PVDF@Esp-PVAM composite separator demonstrates significant potential for enhancing the long-term durability and high-rate performance of lithium-ion batteries, making it a promising option for long-term energy storage applications.
Collapse
Affiliation(s)
- Xiao-Wei Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
| | - Manojkumar Seenivasan
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
| | - Bo-Rong Zhang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
| | - Jeng-Ywan Shih
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
| | - Ying-Jeng James Li
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
| | - Tai-Feng Hung
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
| | - Wen-Chen Chien
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Rajan Jose
- Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, R.O.C
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, R.O.C
- Department of Chemical and Materials Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
3
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
4
|
Zhai Y, Wu Y, Sheng J, Liu H, Huang Z, Xiao Q, Li L. An open-pore MFI zeolite nanosheet-modified separator with Li-ion flux regulation for lithium-metal batteries. Chem Commun (Camb) 2024; 60:324-327. [PMID: 38063134 DOI: 10.1039/d3cc05702j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Separator modification has become one of the most facile and promising methods to inhibit Li dendrite formation. Herein, an open-pore MFI zeolite nanosheet-modified polyacrylonitrile (open-pore MFI NSs@PAN) separator was prepared via the combination of vacuum filtration and the electrospinning technique. The straight channels in the MFI NSs, the fluid channels formed by the stacking of the MFI NSs and the interconnected network channels formed by the interweaving of the PAN nanofibers jointly constructed a micro/nano pore structure, which provides sufficient Li+ transport channels and enables uniform Li+ flux. Consequently, the open-pore MFI NSs@PAN separator-based cell delivers a stable and uniform Li deposition, demonstrating a more stable cycle-life and better rate capability. Redistributing Li+ flux through straight channel zeolite nanosheets provides a powerful method for suppressing Li dendrites, presenting enormous potential for promoting the commercial application of lithium metal batteries.
Collapse
Affiliation(s)
- Yunyun Zhai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
- Research Center for Analysis and Measurement, Jiaxing University, Jiaxing, 314001, China
| | - Yunqin Wu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Junlu Sheng
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Haiqing Liu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Zhenpeng Huang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Qiang Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
5
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Song Y, Zhao G, Zhang S, Xie C, Li X. A Light-Thin Chitosan Nanofiber Separator for High-Performance Lithium-Ion Batteries. Polymers (Basel) 2023; 15:3654. [PMID: 37765508 PMCID: PMC10648088 DOI: 10.3390/polym15183654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
With the development of portable devices and wearable devices, there is a higher demand for high-energy density and light lithium-ion batteries (LIBs). The separator is a significant component directly affecting the performance of LIBs. In this paper, a thin and porous chitosan nanofiber separator was successfully fabricated using the simple ethanol displacement method. The thickness of the CME15 separator was about half that of mainstream commercial Celgard2325 separators. Owing to its inherent polarity and high porosity, the obtained CME15 separator achieved a small contact angle (18°) and excellent electrolyte wettability (324% uptake). The CME15 separator could maintain excellent thermal dimensional stability at 160 °C. Furthermore, the CME15 separator-based LIBs exhibited excellent cycling performance after 100 cycles (117 mAh g-1 at 1 C). The present work offers a perspective on applying a chitosan nanofiber separator in light and high-performance lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sihan Zhang
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China
| |
Collapse
|
7
|
Yang Y, Yang B, Luo M, Yang Y, Wang Y, Miao J, Wang S, Zheng Z, Qian J, Xia R, Ke Y, Tu Y. Considerably enhanced electrochemical and thermomechanical performance of lithium battery (LIB) separators of PVDF/vermiculite nanosheets (VNs) composites via constructing well-defined hierarchical microstructure. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Nguyen AG, Park CJ. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Raza W, Hussain A, Mehmood A, Deng Y, Mushtaq MA, Zhao J, Zong K, Luo G, Rehman LNU, Shen J, Liu D, Cai X. Poly(ether imide) Porous Membrane Developed by a Scalable Method for High-Performance Lithium-Sulfur Batteries: Combined Theoretical and Experimental Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52794-52805. [PMID: 36394388 DOI: 10.1021/acsami.2c14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur (Li-S) batteries are one of the emerging candidates for energy storage systems due to their high theoretical energy density and the abundance/nontoxicity/low cost of sulfur. Compared with conventional lithium-ion batteries, multiple new challenges have been brought into this advanced battery system, such as polysulfide shuttling in conventional polyolefin separators and undesired lithium dendrite formation of the Li metal anode. These issues severely affect the cell performance and impede their practical applications. Herein, we develop a poly(ether imide) (PEI)-based membrane with a sponge-like pore morphology as the separator for the Li-S battery by a simplified phase inversion method. This new separator can not only alleviate the new challenges in Li-S batteries but also exhibit excellent ion conductivity, better thermal stability, and higher mechanical strength compared to those of the conventional polypropylene (PP) separator. A combined experimental and theoretical study indicates that the sponge-like morphology of the PEI membrane and its good wettability toward the electrolyte can facilitate uniform ion transportation and suppress dendrite growth. Meanwhile, the PEI molecules exhibit a strong interaction with polysulfides and avoid their shuttling effectively. As a result, the PEI-based Li-S battery shows a much better performance from various aspects (capacity, rate capability, and cycling stability) than that of the PP-based Li-S battery, especially at high charge/discharge current densities and high sulfur loadings. Since the developed PEI membrane can be easily scaled up, this work may accelerate the practical applications of Li-S batteries from the point of separators.
Collapse
Affiliation(s)
- Waseem Raza
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Arshad Hussain
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong518060, China
| | - Yonggui Deng
- College of Mechatronics and Control Engineering, Shenzhen University Shenzhen, Guangdong518060, China
| | - Muhammad Asim Mushtaq
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Jie Zhao
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Kai Zong
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Geng Luo
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Lashari Najeeb Ur Rehman
- College of Civil and Transportation Engineering, Shenzhen University, Guangdong518060, China
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| | - Jun Shen
- College of Mechatronics and Control Engineering, Shenzhen University Shenzhen, Guangdong518060, China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University Shenzhen, Guangdong518060, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Guangdong518060, China
| |
Collapse
|
10
|
Su Z, Wang B, Li L, Yang G, Yu A, Li G, Zhang J. Dual Structure-Material Design of Separators toward Dendrite-Free Lithium Metal Anodes. CHEMSUSCHEM 2022; 15:e202201352. [PMID: 36000791 DOI: 10.1002/cssc.202201352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The practical applications of lithium metal anodes have been severely hindered by the Li dendrite issue. Herein, a dual structure-material design strategy was developed to fabricate a new type of separator using interconnected hollow porous polyacrylonitrile (PAN) nanofibers (HPPANF), which delivered controllable and dendrite-free Li depositions. The interconnected mesopores on HPPANF bridged the hollow interiors with the outside voids among the fibers, enabling outstanding electrolyte uptake capabilities for high ion conductivity, and nano-level wetted electrolyte/anode interface for uniform Li plating/stripping. In parallel, the HPPANF separator enriched with polar groups acted as an exceptional polymer-based solid-state electrolyte, providing 3D ion channels for the transport of Li ions. Benefiting from the dual structure-material design, the HPPANF separator induced uniform Li ion flux for dendrite-free Li depositions, which caused enhanced cycling stability (1300 h, 3 mA cm-2 ). This work demonstrates a new method to stabilize Li metal anodes through rational separator design.
Collapse
Affiliation(s)
- Zhengkang Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Biao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Linyan Li
- Shanghai Aerospace Power Technology Co., LTD, Shanghai, 201112, P.R. China
| | - Guang Yang
- Shanghai Aerospace Power Technology Co., LTD, Shanghai, 201112, P.R. China
| | - Aishui Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jingjing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
|
12
|
Li WY, Luo ZH, Long X, Long JY, Pang C, Li H, Zhi X, Shi B, Shao JJ, He YB. Cation Vacancy-Boosted Lewis Acid-Base Interactions in a Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51107-51116. [PMID: 34672542 DOI: 10.1021/acsami.1c17002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer electrolytes have gained extensive attention owing to their high flexibility, easy processibility, intrinsic safety, and compatibility with current fabrication technologies. However, their low ionic conductivity and lithium transference number have largely impaired their real application. Herein, novel two-dimensional clay nanosheets with abundant cation vacancies are created and incorporated in a poly(ethylene oxide) (PEO)/poly(vinylidene fluoride-co-hexafluoropropylene)-blended polymer-based electrolyte. The characterization and simulation results reveal that the cation vacancies not only provide lithium ions with additional Lewis acid-base interaction sites but also protect the PEO chains from being oxidized by excess lithium ions, which enhances the dissociation of lithium salts and the hopping mechanism of lithium ions. Benefiting from this, the polymer electrolyte shows a high ionic conductivity of 2.6 × 10-3 S cm-1 at 27 °C, a large Li+ transference number up to 0.77, and a wide electrochemical stability window of 4.9 V. Furthermore, the LiFePO4∥Li coin cell with such a polymer electrolyte delivers a high specific capacity of 145 mA h g-1 with an initial Coulombic efficiency of 99.9% and a capacity retention of 97.3% after 100 cycles at ambient temperature, as well as a superior rate performance. When pairing with high-voltage cathodes LiCoO2 and LiNi0.5Mn1.5O4, the corresponding cells also exhibit favorable electrochemical stability and a high capacity retention. In addition, the LiFePO4∥Li pouch cells display high safety even under rigorous conditions including corner-cut, bending, and nail-penetration.
Collapse
Affiliation(s)
- Wei-Yong Li
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Zhi-Hong Luo
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Xiang Long
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jia-Ying Long
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Chi Pang
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Huan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xing Zhi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bin Shi
- State Key Laboratory of Advanced Chemical Power Sources, Zunyi 563003, China
| | - Jiao-Jing Shao
- School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yan-Bing He
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|