1
|
Liu H, Liang L, Tian F, Xi X, Zhang Y, Zhang P, Cao X, Bai Y, Zhang C, Dong L. Scalable Preparation of Ultraselective and Highly Permeable Fully Aromatic Polyamide Nanofiltration Membranes for Antibiotic Desalination. Angew Chem Int Ed Engl 2024; 63:e202402509. [PMID: 38588046 DOI: 10.1002/anie.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.
Collapse
Affiliation(s)
- Haohao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Feng Tian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xugang Xi
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Yanqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| |
Collapse
|
2
|
Bai Y, Liu B, Li J, Li M, Yao Z, Dong L, Rao D, Zhang P, Cao X, Villalobos LF, Zhang C, An QF, Elimelech M. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. SCIENCE ADVANCES 2023; 9:eadg6134. [PMID: 37146143 PMCID: PMC10162667 DOI: 10.1126/sciadv.adg6134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The successful implementation of thin-film composite membranes (TFCM) for challenging solute-solute separations in the pharmaceutical industry requires a fine control over the microstructure (size, distribution, and connectivity of the free-volume elements) and thickness of the selective layer. For example, desalinating antibiotic streams requires highly interconnected free-volume elements of the right size to block antibiotics but allow the passage of salt ions and water. Here, we introduce stevioside, a plant-derived contorted glycoside, as a promising aqueous phase monomer for optimizing the microstructure of TFCM made via interfacial polymerization. The low diffusion rate and moderate reactivity of stevioside, together with its nonplanar and distorted conformation, produced thin selective layers with an ideal microporosity for antibiotic desalination. For example, an optimized 18-nm membrane exhibited an unprecedented combination of high water permeance (81.2 liter m-2 hour-1 bar-1), antibiotic desalination efficiency (NaCl/tetracycline separation factor of 11.4), antifouling performance, and chlorine resistance.
Collapse
Affiliation(s)
- Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Beibei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Jiachen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Zheng Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Wu B, Wang N, Shen Y, Jin CG, An QF. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Wang M, Li M, Ren Z, Fei Z, Hou Y, Niu QJ. Novel macrocyclic polyamines regulated nanofiltration membranes: Towards efficient micropollutants removal and molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Yu WH, Gan ZQ, Wang JR, Zhao Y, Han J, Fang LF, Wei XZ, Qiu ZL, Zhu BK. A novel negatively charged nanofiltration membrane with improved and stable rejection of Cr (VI) and phosphate under different pH conditions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|