1
|
Bi Y, Meng X, Tan Z, Geng Q, Peng J, Yong Q, Sun X, Guo M, Wang X. A novel ZIF-L/PEI thin film nanocomposite membrane for removing perfluoroalkyl substances (PFASs) from water: Enhanced retention and high flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171727. [PMID: 38492592 DOI: 10.1016/j.scitotenv.2024.171727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Membrane separation technology is widely recognized as an effective method for removing perfluoroalkyl substances (PFASs) in water treatment. ZIF-L, a metal-organic framework (MOF) family characterized by its mat-like cavities and leaf-like morphology, has garnered considerable interest and has been extensively employed in fabricating thin-film nanocomposite (TFN) membranes. In this study, a robust, high-performance TFN membrane to remove PFASs in a nanofiltration (NF) process was created through an interfacial polymerization approach on the surface of polysulfone (PSF), incorporating ZIF-L within the selective layer. The TFN membrane modified by adding 5 wt% ZIF-L (relative to the weight of ethylene imine polymer (PEI)) exhibits 2.3 times higher water flux (up to 47.56 L·m-2·h-1·bar-1) than the pristine thin film composite membrane (20.46 L·m-2·h-1·bar-1), and the rejection for typical PFASs were above 95 % (98.47 % for perfluorooctanesulfonic acid (PFOS) and 95.85 % for perfluorooctanoic acid (PFOA)). The effectiveness of the ZIF-L/PEI TFN membrane in retaining representative PFASs was examined under various conditions, including different pressures, feed concentrations, aqueous environments, and salt ions. Notably, the experiments demonstrated that even after contamination with humic acid (HA), >88 % of the water flux could be restored by washing. Additionally, density functional theory (DFT) calculations were employed to predict the distinct intermolecular interactions between PFASs and ZIF-L as well as PEI. These calculations provide additional insights into the interception mechanism of TFN membranes towards PFASs. Based on this study, TFN membranes incorporating MOF as nanofillers show great potential as an effective method for purifying PFASs from aqueous environments and possess superior environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yujie Bi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangmin Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijun Tan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianqian Geng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiaozhi Yong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaojie Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
2
|
Wang Y, Duan S, Wang H, Wei C, Qin L, Dong G, Zhang Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. MEMBRANES 2023; 14:7. [PMID: 38248697 PMCID: PMC10819655 DOI: 10.3390/membranes14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water. Furthermore, the hydropathic properties of the membranes can be well controlled by adjusting the content of m-ZIF-8 and m-HNTs. A series of modified m-ZIF-8/m-HNT/PAN membranes were prepared to modulate the dye/salt separation performance of TFN membranes. The experimental results showed that our m-ZIF-8/m-HNT/PAN membranes can elevate the water flux significantly up to 42.6 L m-2 h-1 MPa-1, together with a high rejection of Reactive Red 49 (more than 80%). In particular, the optimized NFM-7.5 membrane that contained 7.5 mg of HNTs and 2.5 mg of ZIF-8 showed a 97.1% rejection of Reactive Red 49 and 21.3% retention of NaCl.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Shaofan Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Huixian Wang
- School of Material Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Can Wei
- Pollution Prevention and Control Office, Ecological Environment Protection Commission of Zhengzhou, Zhengzhou 450007, China;
| | - Lijuan Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
- Research Department of New Energy Technology, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450046, China
| | - Guanying Dong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| |
Collapse
|
3
|
Cheng L, Xie Y, Li X, Liu F, Wang Y, Li J. Lecithin decorated thin film composite (TFC) nanofiltration membranes for enhanced sieving performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Zhao S, Di N, Lei R, Wang J, Wang Z. Triphenylamine-based COFs composite membrane fabricated through oligomer-triggered interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Enhanced performance of thin-film nanocomposite membranes achieved by hierarchical zeolites for nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Li L, Wang W, Huang J, Dun R, Lu B, Liu Y, Wu J, Yang S, Hua Z. Facile and template-free synthesis of robust, highly active and easily recyclable submicrometer-sized hierarchical TS-1 aggregates composed of ultra-small nanocrystallites (<50 nm). CrystEngComm 2023. [DOI: 10.1039/d3ce00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Submicrometer-sized hierarchical TS-1 aggregates were synthesized by freeze-drying of precursors and routine steam assisted crystallization. The catalysts exhibited easy isolation and high activity in the oxidative desulfurization of fuel oils.
Collapse
|
7
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
8
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
9
|
Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D Polymer Nanosheets for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103814. [PMID: 35084113 PMCID: PMC8922124 DOI: 10.1002/advs.202103814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Since the discovery of single-layer graphene in 2004, the family of 2D inorganic nanosheets is considered as ideal membrane materials due to their ultrathin atomic thickness and fascinating physicochemical properties. However, the intrinsically nonporous feature of 2D inorganic nanosheets hinders their potential to achieve a higher flux to some extent. Recently, 2D polymer nanosheets, originated from the regular and periodic covalent connection of the building units in 2D plane, have emerged as promising candidates for preparing ultrafast and highly selective membranes owing to their inherently tunable and ordered pore structure, light weight, and high specific surface. In this review, the synthetic methodologies (including top-down and bottom-up methods) of 2D polymer nanosheets are first introduced, followed by the summary of 2D polymer nanosheets-based membrane fabrication as well as membrane applications in the fields of gas separation, water purification, organic solvent separation, and ion exchange/transport in fuel cells and lithium-sulfur batteries. Finally, based on their current achievements, the authors' personal insights are put forward into the existing challenges and future research directions of 2D polymer nanosheets for membrane separation. The authors believe this comprehensive review on 2D polymer nanosheets-based membrane separation will definitely inspire more studies in this field.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Zhao Zhang
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Imran Shakir
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Sustainable Energy Technologies CenterCollege of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| |
Collapse
|
11
|
Covalent organic framework membrane reconstructed through intra-pore reaction having tunable performance for molecular separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
A comprehensive review of electrospray technique for membrane development: Current status, challenges, and opportunities. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Wu Q, Zhang S, Zuo X, Liu L, Xiong J, He J, Zhou Y, Ma C, Chen Z, Yu S. Preparation and characterization of CeO2@high silica ZSM-5 inorganic-organic hybrid polyamide nanofiltration membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Pang J, Cui X, Feng Y, Guo Z, Kong G, Yu L, Zhang C, Wang R, Kang Z, Sun D. Fabrication of Graphene oxide membrane with multiple “Plug-ins” for efficient dye nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|