1
|
Zhu Z, Liu Z, Tan G, Qi J, Zhou Y, Li J. Interlayered Interface of a Thin Film Composite Janus Membrane for Sieving Volatile Substances in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7612-7623. [PMID: 37104662 DOI: 10.1021/acs.est.3c00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.
Collapse
Affiliation(s)
- Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Qing H, Fan S, Liu Y, Li C, Meng J, Yang M, Xiao Z. Thin-Film Composite (TFC) Polydimethylsiloxane (PDMS) Membrane with High Crosslinking Density Fabricated by Coaxial Electrospray for a High Flux. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haijie Qing
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Yangchao Liu
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Chuang Li
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Jiaxin Meng
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Mingxia Yang
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| |
Collapse
|
3
|
Zarak M, Atif S, Meng X, Tian M. Enhancing interfacial interaction of PDMS matrix with ZIF-8 via embedding TiO2@ZIF-8 composites for phenol extraction in aqueous-aqueous membrane extractive process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Xue S, Lin CW, Ji C, Guo Y, Liu L, Yang Z, Zhao S, Cai X, Niu QJ, Kaner RB. Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. NANO LETTERS 2022; 22:1039-1046. [PMID: 35048710 DOI: 10.1021/acs.nanolett.1c04000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial properties within a composite structure of membranes play a vital role in the separation properties and application performances. Building an interlayer can facilitate the formation of a highly selective layer as well as improve the interfacial properties of the composite membrane. However, it is difficult for a nanomaterial-based interlayer to increase the flux and retention of nanofiltration membranes simultaneously. Here, we report a nanofiltration membrane with a hybrid dimensional titania interlayer that exhibits excellent separation performance. The interlayer, composed of Fe-doped titania nanosheets and titania nanoparticles, helps the formation of an ultrathin (∼30 nm thick) and defect-free polyamide selective layer with an ideal nanostructure. The hybrid dimensional interlayer endows the membrane with a superior permeability and alleviates flux decline. In addition, the rigid interlayer framework on a PVDF support drastically improves the pressure resistance of nanofiltration membranes and shows negligible flux loss up to 1.5 MPa of pressure.
Collapse
Affiliation(s)
- Shuangmei Xue
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cheng-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chenhao Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yaoli Guo
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Liping Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhe Yang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shuzhen Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qingshan Jason Niu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|