9
|
He L, Lu Y, Xiao G, Hou M, Chi H, Wang T. Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application. RSC Adv 2021; 12:728-742. [PMID: 35425112 PMCID: PMC8978668 DOI: 10.1039/d1ra07013d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
The diamine monomer 3,3-bis[4-(3-hydroxy-4-amino-phenoxy)phenyl]phthalide (BHAPPP) was firstly synthesized by the nucleophilic substitution of 5-fluoro-2-nitrophenol and phenolphthalein, followed by a reduction reaction. A series of phthalide-containing poly(ether imide)s (PEI) were then prepared through the polycondensation of BHAPPP with six kinds of dianhydrides, including 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA), 4,4'-oxydiphthalic dianhydride (ODPA), 1,2,3,4-cyclobutane tetracarboxylic dianhydride (CBDA) and pyromellitic dianhydride (PMDA), as well as thermal imidization. After further thermal treatment, the corresponding thermal rearrangement (TR) membranes were obtained. Due to the existence of the phthalide lactone ring, the PEIs probably underwent TR and crosslinking simultaneously. With the increase of thermal treatment temperature, the mechanical properties of the TR membranes dramatically decreased, but the gas separation properties obviously increased. When the PEIs were treated at 450 °C for 1 h, the CO2, H2, O2, N2 and CH4 permeability of TR(BHAPPP-6FDA) reached 258.5, 190.5, 38.35, 4.25 and 2.15 Barrers, respectively. Meanwhile, the CO2/CH4 selectivity of 120.2 sharply exceeded the 2008 Robeson limit, and O2/N2 selectivity was 9.02, close to the 2015 upper limit. Therefore, the TR membranes derived from phthalide-containing PEIs exhibit superior gas separation performance, andare expected to be applied in the field of gas separation.
Collapse
Affiliation(s)
- Lei He
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Yunhua Lu
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Guoyong Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Mengjie Hou
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| | - Haijun Chi
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
| | - Tonghua Wang
- School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
| |
Collapse
|
12
|
Seong JG, Lee WH, Lee J, Lee SY, Do YS, Bae JY, Moon SJ, Park CH, Jo HJ, Kim JS, Lee KR, Hung WS, Lai JY, Ren Y, Roos CJ, Lively RP, Lee YM. Microporous polymers with cascaded cavities for controlled transport of small gas molecules. SCIENCE ADVANCES 2021; 7:eabi9062. [PMID: 34586854 PMCID: PMC8480927 DOI: 10.1126/sciadv.abi9062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year.
Collapse
Affiliation(s)
- Jong Geun Seong
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Won Hee Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jongmyeong Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - So Young Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
- Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea
| | - Yu Seong Do
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Joon Yong Bae
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Sun Ju Moon
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Chi Hoon Park
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 33, Dongjin-ro, Jinju 52725, South Korea
| | - Hye Jin Jo
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Ju Sung Kim
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Taoyuan 32023, Taiwan
| | - Wei-Song Hung
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Taoyuan 32023, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Taoyuan 32023, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yi Ren
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Conrad J. Roos
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ryan P. Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| |
Collapse
|