1
|
Golgoli M, Farahbakhsh J, Najafi M, Khiadani M, Johns ML, Zargar M. Resilient forward osmosis membranes against microplastics fouling enhanced by MWCNTs/UiO-66-NH 2 hybrid nanoparticles. CHEMOSPHERE 2024; 359:142180. [PMID: 38679179 DOI: 10.1016/j.chemosphere.2024.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
2
|
Watanabe T, Nakagawa K, Gonzales RR, Kitagawa T, Matsuoka A, Kamio E, Yoshioka T, Matsuyama H. Influence of structure of porous polyketone microfiltration membranes on separation of water‐in‐oil emulsions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Wang C, Park MJ, Yu H, Matsuyama H, Drioli E, Shon HK. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
5
|
Gonzales RR, Sasaki Y, Istirokhatun T, Li J, Matsuyama H. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yao X, Gonzales RR, Sasaki Y, Lin Y, Shen Q, Zhang P, Shintani T, Nakagawa K, Matsuyama H. Surface modification of FO membrane for improving ammoniacal nitrogen (NH4+-N) rejection: Investigating the factors influencing NH4+-N rejection. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Surface charge control of poly(methyl methacrylate-co-dimethyl aminoethyl methacrylate)-based membrane for improved fouling resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Developing a Thin Film Composite Membrane with Hydrophilic Sulfonated Substrate on Nonwoven Backing Fabric Support for Forward Osmosis. MEMBRANES 2021; 11:membranes11110813. [PMID: 34832042 PMCID: PMC8621868 DOI: 10.3390/membranes11110813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
This study describes the fabrication of sulfonated polyethersulfone (SPES) as a super-hydrophilic substrate for developing a composite forward osmosis (FO) membrane on a nonwoven backing fabric support. SPES was prepared through an indirect sulfonation procedure and then blended with PES at a certain ratio. Applying SPES as the substrate affected membrane properties, such as porosity, total thickness, morphology, and hydrophilicity. The PES-based FO membrane with a finger-like structure had lower performance in comparison with the SPES based FO membrane having a sponge-like structure. The finger-like morphology changed to a sponge-like morphology with the increase in the SPES concentration. The FO membrane based on a more hydrophilic substrate via sulfonation had a sponge morphology and showed better water flux results. Water flux of 26.1 L m−2 h−1 and specific reverse solute flux of 0.66 g L−1 were attained at a SPES blend ratio of 50 wt % when 3 M NaCl was used as the draw solution and DI water as feed solution under the FO mode. This work offers significant insights into understanding the factors affecting FO membrane performance, such as porosity and functionality.
Collapse
|
9
|
Effect of the different layered structural modification on the performances of the thin-film composite forward osmosis flat sheet membranes – A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Gonzales RR, Abdel-Wahab A, Han DS, Matsuyama H, Phuntsho S, Shon HK. Control of the antagonistic effects of heat-assisted chlorine oxidative degradation on pressure retarded osmosis thin film composite membrane surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhang L, Gonzales RR, Istirokhatun T, Lin Y, Segawa J, Shon HK, Matsuyama H. In situ engineering of an ultrathin polyamphoteric layer on polyketone-based thin film composite forward osmosis membrane for comprehensive anti-fouling performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Kawabata Y, Gonzales RR, Nakagawa K, Shintani T, Matsuyama H, Fujimura Y, Kawakatsu T, Yoshioka T. Molecular dynamics study on the elucidation of polyamide membrane fouling by nonionic surfactants and disaccharides. Phys Chem Chem Phys 2021; 23:20313-20322. [PMID: 34486597 DOI: 10.1039/d1cp01455b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reverse osmosis (RO) is a widely used energy-efficient separation technology for water treatment. Polyamide (PA) membranes are the conventional choice for this process. Fouling is a serious problem for RO separation. This issue leads to significant decreases in the water permeability of PA membranes, and it has yet to be fully elucidated. In particular, the fouling behavior of a nonionic substance on the negatively charged surface of a PA membrane in an aqueous environment has not been previously studied. In this work, the mechanisms of nonionic substances such as polyoxyethylene octyl ether (PE5) and maltose (Mal) were investigated using molecular dynamics (MD) simulations. In a PA membrane in which the carboxyl group was not dissociated, the hydrophobic portion of the membrane was exposed due to the localization of water molecules around the carboxyl groups in the PA membrane. This caused hydrophobic interaction with the hydrophobic groups of PE5. In the case of an amine-modified PA membrane containing no carboxyl groups, water was not localized around the functional group, and the water orientation of the polyamide surface was also low. Due to this membrane property, the presence of stabilized water around PE5 reduced the number of hydrophobic interactions. In similar manner, a PA membrane with a slightly dissociated carboxyl group was hydrophilic, which reduced the PE5 adsorption. The presence of many dissociated carboxyl groups, however, enhanced the adsorption of PE5 due to the increase in interactions between the dissociated carboxyl groups and the hydrophilic groups of PE5. Therefore, PE5 exhibited an amphipathic adsorption wherein both hydrophilic and hydrophobic groups contributed to adsorption onto the PA membrane. Mal, on the other hand, was highly stable in every aqueous environment independent of the state of the functional groups of the PA membrane, and was not easily affected by the properties of the PA membrane.
Collapse
Affiliation(s)
- Yuki Kawabata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Takuji Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan.,Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Yu Fujimura
- Research and Development Division, Kurita Water Industries Ltd, 1-1 Kawada, Nogi, Shimotsuga, Tochigi 329-0105, Japan
| | - Takahiro Kawakatsu
- Research and Development Division, Kurita Water Industries Ltd, 1-1 Kawada, Nogi, Shimotsuga, Tochigi 329-0105, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| |
Collapse
|
13
|
Kato N, Gonzales RR, Nishitani A, Negi Y, Ono T, Matsuyama H. Single-step preparation of nanocomposite polyamide 6 hollow fiber membrane with integrally skinned asymmetric structure for organic solvent nanofiltration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|