1
|
Deng W, Guo R, Wang G, Zeng Z, Ren T, Pan S. Exploiting the interfacial instability of liquid-infused Janus membranes for versatile liquid gating. J Colloid Interface Sci 2025; 686:578-588. [PMID: 39914303 DOI: 10.1016/j.jcis.2025.01.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
HYPOTHESIS With varied affinities for distinct liquids, liquid/solid interfaces can exhibit different stability against external liquids. For liquid-infused Janus membranes with different surface chemistry, there may be significant osmotic pressure gradients across the membrane, facilitating liquid gating of various liquids in diverse systems. Such strategy may highly widen the application areas of liquid gating technology. EXPERIMENTS Liquid-infused Janus membranes were prepared via the combination of hydroxyapatite (amphiphilic but more water-loving) on one side and 3-(dodecylamino) propane-1-sulfonic acid (amphiphilic but more oil-loving) on the other side and subsequent infusion of various liquids (water or oils). The gating property of them was studied for all the conditions and the application potential in various areas including medical and micro-reaction was also explored. FINDINGS After being infused with certain liquids (i.e., water or oils), the obtained membranes displaying opposite affinity toward water and oils can universally gate immiscible liquids at a high rectification ratio in air and in liquids. The interfacial instability of liquid films on the reverse sides was found to be critical in the achievement of liquid gating. Moreover, such gating property is also applicable in the transportation of various soluble substances (ions and drugs) and facilitating the dislodgement of blood.
Collapse
Affiliation(s)
- Wanshun Deng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Polyimide Film Engineering Technology Research Center, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Polyimide Film Engineering Technology Research Center, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 China; Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Gang Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 China.
| | - Tianhui Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Shuaijun Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Polyimide Film Engineering Technology Research Center, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 China; Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Zhang Y, Li Y, Chen X, Liu K, Liu J, Zeng Y. Facile Fabrication of Binary-Structured Fibrous Membranes with Antifouling and Flame-Retardant Properties for Durable Water/Oil Separation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9937-9944. [PMID: 39885703 DOI: 10.1021/acsami.4c21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Membrane fouling from dispersed droplets during water/oil separation undermines performance and limits long-term use. Additionally, there is an urgent need for flame-retardant fibrous membranes capable of purifying high-temperature polluted oils. Inspired by the binary structure of taro leaves, this study introduces a novel fibrous membrane with both antifouling and flame-retardant properties for water/oil treatment. Eco-friendly cellulose acetate (CA) and multifunctional thermoplastic polyurethane (TPU) were used to construct a microfiber-based substrate membrane via electrospinning. A TPU/ammonium polyphosphate (APP) nanofiber layer with a beads-on-string structure was then electrosprayed onto the substrate as a functional layer. This binary-structured composite membrane leverages the adhesive properties of TPU within both the base microfibers and the functional nanofibers, enhancing stability and structural integrity. The functional layer's re-entrant structure effectively prevents dispersed droplets from adhering under the continuous phase, enabling efficient separation performance in both oil-in-water and water-in-oil emulsions. The membrane demonstrated strong antifouling properties and excellent recyclability, maintaining stable flux and a consistently high separation efficiency (>99.6%) across multiple cycles. Additionally, its flame-retardant properties allowed the membrane to self-extinguish when removed from direct flame. This study presents a novel strategy for fabricating multifunctional separation membranes, with detailed analysis of the underlying mechanisms.
Collapse
Affiliation(s)
- Yu Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinyu Chen
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Kai Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jie Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Chen W, Liu K, Liao X, Wu J, Chen L, Yang Z, Wang X, Liao Y, Fu G, Yang X, Wang Z, Qu G, Wang L, Zhou Y, Zhang Z, Yang C, Ni S, Zheng J, Tao TH, Zou D. Harmonizing Thickness and Permeability in Bone Tissue Engineering: A Novel Silk Fibroin Membrane Inspired by Spider Silk Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310697. [PMID: 38102951 DOI: 10.1002/adma.202310697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Guided bone regeneration gathers significant interest in the realm of bone tissue engineering; however, the interplay between membrane thickness and permeability continues to pose a challenge that can be addressed by the water-collecting mechanism of spider silk, where water droplets efficiently move from smooth filaments to rough conical nodules. Inspired by the natural design of spider silk, an innovative silk fibroin membrane is developed featuring directional fluid transportation via harmoniously integrating a smooth, dense layer with a rough, loose layer; conical microchannels are engineered in the smooth and compact layer. Consequently, double-layered membranes with cone-shaped microporous passageways (CSMP-DSF membrane) are designed for in situ bone repair. Through extensive in vitro testing, it is noted that the CSMP-DSF membrane guides liquid flow from the compact layer's surface to the loose layer, enabling rapid diffusion. Remarkably, the CSMP-DSF membrane demonstrates superior mechanical properties and resistance to bacterial adhesion. When applied in vivo, the CSMP-DSF membrane achieves results on par with the commercial Bio-Gide collagen membranes. This innovative integration of a cross-thickness wetting gradient structure offers a novel solution, harmonizing the often-conflicting requirements of material transport, mechanical strength, and barrier effectiveness, while also addressing issues related to tissue engineering scaffold perfusion.
Collapse
Affiliation(s)
- Wenze Chen
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoyu Liao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Jing Wu
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zihan Yang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiping Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yinxiu Liao
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guiqiang Fu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xiaonian Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Zishuo Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guanlin Qu
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Li Wang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuqiong Zhou
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - ZhiYuan Zhang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Yang
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jisi Zheng
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Duohong Zou
- National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| |
Collapse
|
4
|
Cao Y, Zheng W, Hao B, Xiao H, Cui Y, Huang X, Shi B. Structural Engineering-Enabled Joule Heating Effect Cooperated with Capillary Effect Toward Fast Spreading of Droplets for High-Flux Separation of Viscous Emulsion. SMALL METHODS 2023; 7:e2300513. [PMID: 37530204 DOI: 10.1002/smtd.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Viscous emulsions with poor fluidity and high adhesion are extremely difficult to separate. Herein, high-flux separation of viscous emulsions is realized by developing structural engineered collagen fibers (CFs)-based composite membrane that featured 3D conductive hierarchical fiber structure with the spaced carbon nanofibers (CNFs) and activated carbon (AC) serving as conductive network and competitive adsorption-based demulsifying sites, respectively. The as-designed membrane structure boosts fast spreading of emulsion droplets on membrane surface aided by the synergistic effect of joule heat in situ generated by the spaced CNFs and the capillary effect derived from CFs, which guarantees the full contact of viscous emulsions with the spaced AC for achieving ultra-efficient demulsifying. The permeation of resultant oily filtrate is accelerated by the capillary effect of hierarchically fibrous structured CFs to exhibit fast transport kinetics, therefore accomplishing high-flux separation. The structural engineered membrane achieves high-performance separation toward different viscous emulsions (55.4-123.7 mPa·s) with separation efficiency >99.9% and flux high up to 259 L m-2 h-1 . The investigations provide a novel structural engineering strategy for realizing high-performance separation of viscous emulsions.
Collapse
Affiliation(s)
- Yiran Cao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wan Zheng
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Tian B, Hu M, Yang Y, Wu J. A Janus membrane doped with carbon nanotubes for wet-thermal management. NANOSCALE ADVANCES 2023; 5:4579-4588. [PMID: 37638159 PMCID: PMC10448357 DOI: 10.1039/d3na00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
In a human skin-fibrous fabric-external environment, fibrous materials, as the "second skin" of the human body, provide comfort against the wet and heat effectively. Fibrous materials protect human health and guarantee work efficiency in various outdoor or inner scenes. Personal wet-thermal management based on fibrous materials can regulate comfort in a facile manner with low or zero energy consumption, which has become a potential development area. However, realizing synergistic management of the wet and heat effectively and conveniently is a challenge in the development and production of fibrous materials. We designed and fabricated a Janus fibrous membrane composed of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA)-modified hydrophobic cotton gauze and electrospun carbon nanotubes (CNTs)-doped cellulose acetate (CA) hydrophilic fibrous membrane. Taking advantage of asymmetric wettability along its thickness direction, the Janus fibrous membrane, acting as a "liquid diode", could transport sweat/moisture from human skin to the external environment unidirectionally, which endowed a dry surface on human skin, avoiding "stickiness", and realizing wet management. Doped CNTs had good photothermal-conversion capacity, so the Janus membrane exhibited excellent heating capacity for passive radiation, so excellent synergistic wet-thermal management was obtained. The Janus membrane could be a candidate for diverse applications of fibrous membranes. Our data provide new ideas for the design and fabrication of fibrous membranes with remarkable wet-thermal management.
Collapse
Affiliation(s)
- Boyang Tian
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yiwen Yang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
6
|
Ao F, Luo X, Shen W, Ge X, Li P, Zheng Y, Wu S, Mao Y, Luo Y. Multifunctional electrospun membranes with hydrophilic and hydrophobic gradients property for wound dressing. Colloids Surf B Biointerfaces 2023; 225:113276. [PMID: 36989814 DOI: 10.1016/j.colsurfb.2023.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Achieving sustained and stable release of macromolecular antibacterial agents and unidirectional transport of liquids in targeted environment is still a challenge to be addressed in the management of wounds with large amounts of tissue exudates. In this work, a multilayer electrospun membrane (ethylcellulose-ethylcellulose/gelatin-quercetin/Eudragit L-100/polyethylene glycol, EC-EC/Gel-Q/EL/PEG) was designed with hydrophobic-hydrophilic gradients and drug sustained-release properties controlled by self-pumping effect and prepared using sequential electrospinning technology. The capillary force of different layers in the multilayer membrane could be controlled by precisely tuning the polymer concentrations of the inner and middle layers to extract water directly from hydrophobic inner ethylcellulose (EC) layer to hydrophilic middle ethylcellulose/gelatin (EC/Gel) layer. The droplets could not penetrate the hydrophobic side, but the drug molecules in the outer layer quercetin-loaded Eudragit L-100 (Q/EL/PEG) membrane moved after absorbing a large amount of water. The drug release behavior of multilayer wound dressing mainly followed the Korsmeyer-Peppas model. This multifunctional electrospun membrane could rapidly drive the biofluid outflow, effectively block the invasion of external contaminants and continuously release anti-inflammatory drugs, without any obvious cytotoxicity to mouse fibroblast cells. Hence, the above results indicate the excellent therapeutic potential of the proposed biomaterial as a wound dressing for diabetic patients.
Collapse
|
7
|
Wang Z, Guan M, Jiang X, Xiao J, Shao Y, Li S, Chen Y. Bioinspired Under-Liquid Dual Superlyophobic Surface for On-Demand Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:870-877. [PMID: 36602256 DOI: 10.1021/acs.langmuir.2c03060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Porous membranes with under-liquid dual superlyophobic properties, which are difficult to achieve because of a thermodynamic contradiction, have attracted considerable interest in the field of switchable oil/water separation. Herein, a bioinspired mesh membrane with alternating hydrophilic and hydrophobic chemical patterns on its surface that endows it with superamphiphilic and under-liquid dual superlyophobic properties is fabricated by a simple liquidus modification process. The as-prepared membrane possesses a combination of under-oil superhydrophobic and under-water superoleophobic characteristics in the absence of external stimuli. Moreover, it can effectively perform the on-demand separation of various oil/water systems, including immiscible oil/water mixtures and oil/water emulsions owing to its under-liquid dual superlyophobic properties.
Collapse
Affiliation(s)
- Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin123000, P. R. China
| | - Min Guan
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin123000, P. R. China
| | - Xiangpeng Jiang
- Shandong Weigao Group Medical Polymer Co., Ltd, Weihai264210, P. R. China
| | - Jinyue Xiao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin123000, P. R. China
| | - Yubing Shao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin123000, P. R. China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
- University of Science and Technology of China, Hefei230026, P. R. China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
| |
Collapse
|
8
|
Li D, Xu C, Huang J, Guo Z. Janus Fabric with Asymmetric Wettability for Switchable Emulsion Separation and Controllable Droplets with Low Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1320-1329. [PMID: 36626239 DOI: 10.1021/acs.langmuir.2c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superwetting surfaces have recently attracted extensive attention in oil-water emulsion separation and droplet manipulations, which are widely used in various situations ranging from wastewater treatment, to flexible electronics, to biochemical diagnosis. However, it still remains challenging to obtain asymmetric materials with high efficiency during oil-water separation. Meanwhile, excellent robustness of the superhydrophobic surface is of significance but retards the mobility of droplets due to increased lateral adhesion of small spacing between solid protrusions. Herein, a facile approach is demonstrated to obtain the excellent robustness of Janus fabrics with asymmetric wettability. As for one side of water-in-oil emulsion separation, mimicking the soft earthworm with periodically wrinkled skin, an adaptive superhydrophobic fabric was fabricated by wrapping soft wrinkled poly(dimethylsiloxane) (PDMS) polymer with a cross-linking structure on woven fabric fibers induced by Ar plasma treatment. In addition, inspired by the desert beetle's structure but with reversed wettability, the other side of the Janus fabric was constructed for treating emulsion of oil-in-water. In addition, the underwater superoleophobic surface consisting of magnetically responsive PDMS microcilia with slippery heads, which shows robustness against pH, improved water drop mobility and lowered the resistance of fluid friction similar to the intrinsic hydrophobic Salvinia molesta with additional slippery performance. Hence, we propose a novel and easy approach that optimizes enhanced emulsion separation and reduced fluid drag properties simultaneously, which actively broadens their widespread applications.
Collapse
Affiliation(s)
- Deke Li
- School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou730050, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, People's Republic of China
| |
Collapse
|
9
|
Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chen J, Rao Y, Zhu X, Wang J, Tang X, Feng S, Zhang F, Zhong Z, Xing W. Electrospun nanofibrous membranes with asymmetric wettability for unidirectional moisture transport, efficient PM capture and bacteria inhibition. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sun Q, Xiang B, Mu P, Li J. Green Preparation of a Carboxymethyl Cellulose-Coated Membrane for Highly Efficient Separation of Crude Oil-In-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7067-7076. [PMID: 35617663 DOI: 10.1021/acs.langmuir.2c00834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing high-performance membranes is an extremely significant strategy to combat increasing severe oil pollution. However, most of the previously reported superwettable membranes have been inevitably involved with the use of toxic solvents and complicated preparation processes. In addition, most of them lacked the capacity of separating crude oil-in-water emulsions. Herein, a facile and green strategy is employed to fabricate a polytetrafluoroethylene (PTFE) membrane with a mixed suspension of PDA@ZIF-8 and carboxymethyl cellulose (CMC) using water as a solvent via the vacuum filtration method. Combining hydrophilic property with micro-nano-roughness, the CMC-PDA@ZIF-8-coated PTFE membrane (CPZP membrane) exhibits excellent underwater superoleophobicity. More importantly, the separation efficiency of various surfactant-stabilized oil-in-water emulsions including crude oil/water emulsion is higher than 99.2% with a flux up to 1306.5 L m-2 h-1, and the separation performance remains nearly the same after 10 cycles. Moreover, outstanding underwater superoleophobic and self-cleaning properties are maintained after long-distance sandpaper abrasion and multiple bending tests. Meanwhile, its exceptional separation performance is still maintained in harsh environments (3.5 wt % NaCl, 1 M HCl, 60 °C hot water) even after immersing it for 24 h. Therefore, this green-prepared and high-performance membrane has tremendous application prospects in treating oily wastewater.
Collapse
Affiliation(s)
- Qing Sun
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bin Xiang
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peng Mu
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jian Li
- Gansu International Scientific and Technological Cooperation Base of Water-retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
12
|
Nanosponge membrane with 3D-macrocycle β-cyclodextrin as molecular cage to simultaneously enhance antifouling properties and efficient separation of dye/oil mixtures. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Yang J, Yu T, Wang Z, Li S, Wang L. Substrate-independent multifunctional nanostructured coating for diverse wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Zwitterionic analog structured ultrafiltration membranes for high permeate flux and improved anti-fouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Wang Z, Li H, Yang X, Guan M, Wang L. Multi-Bioinspired Janus Copper Mesh for Improved Gravity-Irrelevant Directional Water Droplet and Flow Transport. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2137-2144. [PMID: 35108022 DOI: 10.1021/acs.langmuir.1c03267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A conceptually novel multi-bioinspired strategy based on structures and functions derived from the Namib desert beetle and lotus leaf is proposed in this paper. The proposed scheme synergistically combines the features of alternating wettability patterns and asymmetric wettability for improved directional water transport. Consequently, a Janus copper mesh, which substantially outperforms other single-bioinspired synthetic materials, is produced. The Janus copper mesh achieves directional self-transportation of tiny water droplets and continuous water flow in a gravity-irrelevant or an anti-gravity manner without energy consumption. This depends on the asymmetric wettability and alternating hydrophobic-hydrophilic wettability patterns on the hydrophobic surface of the mesh. In particular, Janus copper shows remarkable selective directional water transport in a water-oil system, rendering it a promising candidate for practical applications.
Collapse
Affiliation(s)
- Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Hanzhen Li
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Xin Yang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Min Guan
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Laigui Wang
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| |
Collapse
|
16
|
Shen Q, Jiang Y, Guo S, Huang L, Xie H, Li L. One-step electrospinning membranes with gradual-transition wettability gradient for directional fluid transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Huang G, Jin Y, Huo L, Yuan S, Zhao R, Zhao J, Li Z, Li Y. An All-Hydrophobic Fluid Diode for Continuous and Reduced-Wastage Water Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51708-51717. [PMID: 34665605 DOI: 10.1021/acsami.1c14724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directional water transport that occurs in natural insects and plants is important to both organisms and advanced science and technology. Despite the many studies conducted to facilitate directional liquid transport by constructing double-layered hydrophilic/hydrophobic materials, it remains difficult to achieve continuous water transport and reduce liquid wastage due to the hydrophilic regions. Herein, a directional water transport fabric (DWTF) was fabricated using a simple single-side coating method based on entirely hydrophobic materials. With coating thicknesses of 13-29 μm, the fabric could guide the continuous water motion from the coated to the uncoated side and can be utilized as a "liquid diode". In addition, the DWTF exhibited a water wastage reduction during the transport process, benefiting from the intrinsic hydrophobic properties of the material. Moreover, a plausible mechanism of water transport is proposed to explain the water droplet transfer in the bilayered hydrophobic materials. Consequently, the resulting DWTF exhibited an excellent accumulative one-way transport capability (AOTC) of 965.7% and a desirable overall moisture management capability (OMMC) of 0.92. This work provides an avenue for fabricating smart fluid delivery materials to various applications such as flexible microfluidics, wound dressing, oil-water separation processes, and engineered desiccant materials.
Collapse
Affiliation(s)
- Gang Huang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yikai Jin
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liang Huo
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuaijie Yuan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ruixi Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhengrong Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangling Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|