1
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Liu H, Liang L, Tian F, Xi X, Zhang Y, Zhang P, Cao X, Bai Y, Zhang C, Dong L. Scalable Preparation of Ultraselective and Highly Permeable Fully Aromatic Polyamide Nanofiltration Membranes for Antibiotic Desalination. Angew Chem Int Ed Engl 2024; 63:e202402509. [PMID: 38588046 DOI: 10.1002/anie.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.
Collapse
Affiliation(s)
- Haohao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Feng Tian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xugang Xi
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Yanqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| |
Collapse
|
3
|
Bai Y, Liu B, Li J, Li M, Yao Z, Dong L, Rao D, Zhang P, Cao X, Villalobos LF, Zhang C, An QF, Elimelech M. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. SCIENCE ADVANCES 2023; 9:eadg6134. [PMID: 37146143 PMCID: PMC10162667 DOI: 10.1126/sciadv.adg6134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The successful implementation of thin-film composite membranes (TFCM) for challenging solute-solute separations in the pharmaceutical industry requires a fine control over the microstructure (size, distribution, and connectivity of the free-volume elements) and thickness of the selective layer. For example, desalinating antibiotic streams requires highly interconnected free-volume elements of the right size to block antibiotics but allow the passage of salt ions and water. Here, we introduce stevioside, a plant-derived contorted glycoside, as a promising aqueous phase monomer for optimizing the microstructure of TFCM made via interfacial polymerization. The low diffusion rate and moderate reactivity of stevioside, together with its nonplanar and distorted conformation, produced thin selective layers with an ideal microporosity for antibiotic desalination. For example, an optimized 18-nm membrane exhibited an unprecedented combination of high water permeance (81.2 liter m-2 hour-1 bar-1), antibiotic desalination efficiency (NaCl/tetracycline separation factor of 11.4), antifouling performance, and chlorine resistance.
Collapse
Affiliation(s)
- Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Beibei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Jiachen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Zheng Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, P. R. China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental and Chemical Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Robust ZIF-8 and its derivative composite membrane for antibiotic desalination with high performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Li J, Wang H, Reddy N, Zhu Z, Zheng J, Wang W, Liu B, Hu C. MOF FeCo/B-CN composites achieve efficient degradation of antibiotics in a non-homogeneous concurrent photocatalytic-persulfate activation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159795. [PMID: 36336040 DOI: 10.1016/j.scitotenv.2022.159795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
We synthesized an MFeCoB0.4CNx% (MOF-Fe/Co nanosheets/boron-doped g-C3N4) composite catalyst for enhancing the concurrent photocatalytic-persulfate activation (CPPA) system and achieved efficient degradation of antibiotics. The role of MOF-Fe/Co is to activate persulfate, while boron-doped g-C3N4 can generate photogenerated electrons for the reduction of Co3+/Fe3+ to enhance the regeneration of the active center. The rate constant for Tetracycline degradation by the CPPA system was 4.74 and 7.54 times higher than the photocatalytic and persulfate-activated systems, respectively. This composite was shown to be practical and economically viable for antibiotic degradation. The degradation behavior was explored based on experiments, and molecular orbitals and Fukui functions were obtained by density functional theory calculations. Mechanisms were investigated using reactive oxygen species trapping studies and electron spin resonance, and the process was explained in terms of the charge population and electron density difference of MOF-Fe/Co nanosheets. The CPPA system is an ecologically benign technology for removing antibiotic-related risks to the environment and human health.
Collapse
Affiliation(s)
- Jinyang Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Haofu Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Narendra Reddy
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Thataguni, Off Kanakapura Road, Bangalore, Karnataka 560082, India
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
6
|
Triethanolamine-based zwitterionic polyester thin-film composite nanofiltration membranes with excellent fouling-resistance for efficient dye and antibiotic separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Wu B, Wang N, Shen Y, Jin CG, An QF. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Removal Efficiency of Sulfapyridine from Contaminated Surface Water by Carboxylated Graphene Oxide Blended PVDF Composite Ultrafiltration Membrane with Activated Carbon. Polymers (Basel) 2022; 14:polym14214779. [DOI: 10.3390/polym14214779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, sulfapyridine (SPY), an antibiotic that is less commonly treated by membrane filtration techniques but is frequently detected in the aqueous environment and at higher concentrations than other detected antibiotics, was selected for investigation. A composite ultrafiltration membrane for the removal of sulfapyridine (SPY) antibiotics from water was fabricated using polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), and carboxyl-functionalized graphene oxide (CFGO) as additives. The changes in retention rate and pure water flux of sulfapyridine by the composite ultrafiltration membrane were investigated by changing the ratios of the prepared ultrafiltration membrane materials under the conditions of low-pressure operation to explore the optimal experimental conditions. The results showed that the addition of PVP and CFGO significantly increased the number of membrane pores and their pore size. The addition of CFGO in the membrane significantly improved the hydrophilicity of the membrane. The contact angle decreased from 83.7 to 31.6°. Compared to ordinary PVDF ultrafiltration membranes, the membrane’s pure water flux increased nearly three times to 2612.95 L/(m2·h). The removal rate of SPY was 56.26% under the optimal conditions. When the composite ultrafiltration membrane was combined with activated carbon, the removal rate of SPY was 92.67%, which was nine times higher than that of activated carbon alone. At this time, the flux of the composite membrane was 2610.23 L/(m2·h). This study proposes a simple, efficient, and low production cost solution for the removal of sulfapyridine from water.
Collapse
|
9
|
Wu LK, Zhu QY, Li LQ, Xu ZL, Xue SM, Ji CH, Tang CY, Zhuang L, Tang YJ. Exploration of Permeation Resistance Change of the Polyamide Nanofiltration Membrane during Heat Curing by Using Organic Molecules as Functional Fillers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liu-Kun Wu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Qiu-Yu Zhu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Lan-Qian Li
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Shuang-Mei Xue
- Institute for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Chen-Hao Ji
- Institute for Advanced Study, Shenzhen University, Shenzhen518060, China
| | - Chuyang Y. Tang
- Department of Civil Engineering, The University of Hong Kong, PokfulamHW619B, Hong Kong, China
| | - Liwei Zhuang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Yong-Jian Tang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
10
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Ding HZ, Xie F, Wang ZY, Huang W, Ma XH, Xu ZL. 2D nanosheets optimized electrospray-assisted interfacial polymerization polyamide membrane with excellent separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Xue S, Lin CW, Ji C, Guo Y, Liu L, Yang Z, Zhao S, Cai X, Niu QJ, Kaner RB. Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. NANO LETTERS 2022; 22:1039-1046. [PMID: 35048710 DOI: 10.1021/acs.nanolett.1c04000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfacial properties within a composite structure of membranes play a vital role in the separation properties and application performances. Building an interlayer can facilitate the formation of a highly selective layer as well as improve the interfacial properties of the composite membrane. However, it is difficult for a nanomaterial-based interlayer to increase the flux and retention of nanofiltration membranes simultaneously. Here, we report a nanofiltration membrane with a hybrid dimensional titania interlayer that exhibits excellent separation performance. The interlayer, composed of Fe-doped titania nanosheets and titania nanoparticles, helps the formation of an ultrathin (∼30 nm thick) and defect-free polyamide selective layer with an ideal nanostructure. The hybrid dimensional interlayer endows the membrane with a superior permeability and alleviates flux decline. In addition, the rigid interlayer framework on a PVDF support drastically improves the pressure resistance of nanofiltration membranes and shows negligible flux loss up to 1.5 MPa of pressure.
Collapse
Affiliation(s)
- Shuangmei Xue
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cheng-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chenhao Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yaoli Guo
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Liping Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhe Yang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shuzhen Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qingshan Jason Niu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Fabrication of thin-film composite hollow fiber membranes in modules for concentrating pharmaceuticals and separating sulphate from high salinity brine in the chlor-alkali process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|