1
|
Choudhary P, Saini N, Yoon MH, Awasthi K, Pandey K. ZIF-8 @polycarbonate nanocomposite membranes for improved permeability and selectivity for hydrogen gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105387-105397. [PMID: 37713078 DOI: 10.1007/s11356-023-29650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Through this work, we are reporting high-performance ZIF-8 @polycarbonate nanocomposite membranes with satisfactory structural stability for improving the gas separation performance. ZIF-8 nanoparticles were synthesised using the wet chemical route with cubic morphology and controlled size using CTAB as a surfactant. The membranes were prepared using the solution casting method by adding ZIF-8 filler at various concentrations. The synthesised filler material and MMMs were characterised through X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and RAMAN spectroscopy techniques. The gas separation measurements were taken using H2, CO2, and N2 gas in the purest form. The SEM results confirm the formation of spherulite-like morphology with the addition of ZIF-8 due to the crystallisation of the polymer, which increased the membrane's free volume and opened up additional pathways for the transportation of the gas molecules. The gas separation results confirmed that the 15 wt% ZIF-8/PC nanocomposite membrane showed the maximum H2 permeability of 180,970 barrer with an increment of 316.03%, while H2/CO2 and H2/N2 selectivity showed the increments of 89.43% and 103.64%, respectively. Therefore, this PC/ZIF-8 system seems to be a promising approach to developing new H2 selective membranes with high gas permeability and gas selectivity values.
Collapse
Affiliation(s)
- Prashant Choudhary
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Myung Han Yoon
- Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Kamakshi Pandey
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
2
|
Yin L, Li D, Guo H, Wang S, Zhang T, Liu Y, Gai F, Zhao X. High-performance carbonized ZIF-8-doped hybrid carbon molecular sieve membrane for CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Cheng J, Hou W, Liu N, Yang C, Zhou J. GeFSIX‐1‐Cu
based semi‐interpenetrating network mixed matrix membranes for efficient
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Wen Hou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Niu Liu
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Chen Yang
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou China
| |
Collapse
|
4
|
Zhu S, Wang Z, Shi Y, Lai W, Zhang Y, Jin J, Jin J. Benzyl-Induced Crosslinking of Polymer Membranes for Highly Selective CO 2/CH 4 Separation with Enhanced Stability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shouwen Zhu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhenggong Wang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yanshu Shi
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weikang Lai
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jianyong Jin
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jian Jin
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Niu Y, Chen Y, Bao S, Sun H, Wang Y, Ge B, Li P, Hou Y. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Shi Y, Liang J, Babu Shrestha B, Wang Z, Zhang Y, Jin J. Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Shi Y, Wang Z, Shi Y, Zhu S, Zhang Y, Jin J. Synergistic Design of Enhanced π–π Interaction and Decarboxylation Cross-Linking of Polyimide Membranes for Natural Gas Separation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanshu Shi
- Innovation Center for Chemical Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenggong Wang
- Innovation Center for Chemical Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Yapeng Shi
- Innovation Center for Chemical Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Shouwen Zhu
- Innovation Center for Chemical Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Jin
- Innovation Center for Chemical Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhang X, Rong M, Qin P, Tan T. PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Qiang X, Guo X, Su H, Zhao H, Ouyang C, Huang D. In situ nanoarchitectonics of magnesium hydroxide particles for property regulation of carboxymethyl cellulose/poly(vinyl alcohol) aerogels. RSC Adv 2021; 11:35197-35204. [PMID: 35493185 PMCID: PMC9043012 DOI: 10.1039/d1ra06556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Carboxymethyl cellulose (CMC)-based aerogels with low density, low thermal conductivity, and biodegradability are promising candidates for environmentally friendly heat-insulating materials. However, the application of CMC-based aerogels as insulation materials in building exterior walls is limited by the high water sensitivity, poor mechanical properties and high flammability of these aerogels. In this work, a simple hydration method was used to generate magnesium hydroxide (MH) directly from CMC/polyvinyl alcohol (PVA) mixed sol with active MgO obtained by calcined magnesite as the raw material. A series of composite aerogels with different MH contents were prepared through the freeze-drying method. Scanning electron microscopy showed that nanoflower-like MH was successfully synthesised in situ in the 3D porous polymer aerogel matrix. Compared with the mechanical properties and water resistance of the original CMC/PVA composite aerogels, those of the composite aerogels were significantly improved. In addition, the flame retardancy of the CMC/PVA composite aerogels was greatly enhanced by the introduction of MH into the polymer matrix, and the limiting oxygen index reached 35.5% when the MH loading was 60%.
Collapse
Affiliation(s)
- Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Xin Guo
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hongxi Su
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Hong Zhao
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Chengwei Ouyang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| |
Collapse
|
11
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|