1
|
Bearden S, Abramyan TM, Gil D, Johnson J, Murashko A, Makaev S, Mai D, Baranchikov A, Ivanov V, Reukov V, Zhang G. Resolving the Size and Charge of Small Particles: A Predictive Model of Nanopore Mechanics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:17619-17630. [PMID: 39439880 PMCID: PMC11492372 DOI: 10.1021/acs.jpcc.4c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 07/25/2024] [Indexed: 10/25/2024]
Abstract
The movement of small particles and molecules through nanopore membranes is widespread and has far-reaching implications. Consequently, the development of mathematical models is essential for understanding these processes on a micro level, leading to deeper insights. In this endeavor, we suggested a model based on a set of empirical equations to predict the transport of substances through a solid-state nanopore and the associated signals generated during their translocation. This model establishes analytical relationships between the ionic current and electrical double-layer potential observed during analyte translocation and their size, charge, and mobility in an electrolyte solution. This framework allows for rapid interpretation and prediction of the nanopore system's behavior and provides a means for quantitatively determining the physical properties of molecular analytes. To illustrate the analytical capability of this model, ceria nanoparticles were investigated while undergoing oxidation or reduction within an original nanopore device. The results obtained were found to be in good agreement with predictions from physicochemical methods. This developed approach and model possess transferable utility to various porous materials, thereby expediting research efforts in membrane characterization and the advancement of nano- and ultrafiltration or electrodialysis technologies.
Collapse
Affiliation(s)
- Samuel Bearden
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
| | - Tigran M. Abramyan
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
| | - Dmitry Gil
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
- Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jessica Johnson
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
| | - Anton Murashko
- University
of Georgia, Athens, Georgia 30602, United States
| | - Sergei Makaev
- University
of Georgia, Athens, Georgia 30602, United States
| | - David Mai
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Alexander Baranchikov
- Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Vladimir Ivanov
- Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | | | - Guigen Zhang
- Department
of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, South Carolina 29634, United States
- F. Joseph
Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 PMCID: PMC11961765 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
3
|
Walker SN, Lucas K, Dewey MJ, Badylak S, Hussey G, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using 'Catch and Display' on Ultrathin Nanoporous Silicon Nitride Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.589900. [PMID: 38746341 PMCID: PMC11092443 DOI: 10.1101/2024.04.29.589900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
4
|
Lucas K, Oh J, Hoelzl J, Weissleder R. Cellular point-of-care diagnostics using an inexpensive layer-stack microfluidic device. LAB ON A CHIP 2022; 22:2145-2154. [PMID: 35514273 PMCID: PMC9214713 DOI: 10.1039/d2lc00162d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular analyses are increasingly used to diagnose diseases at point-of-care and global healthcare settings. Some analyses are simple as they rely on chromogenic stains (blood counts, malaria) but others often require higher multiplexing to define and quantitate cell populations (cancer diagnosis, immunoprofiling). Simplifying the latter with inexpensive solutions represents a current bottleneck in designing start-end pipelines. Based on the hypothesis that novel film adhesives could be used to create inexpensive disposable devices, we tested a number of different designs and materials, to rapidly perform 12-15 channel single-cell imaging. Using an optimized passive pumping layer-stack microfluidic (PLASMIC) device (<1 $ in supplies) we show that rapid, inexpensive cellular analysis is feasible.
Collapse
Affiliation(s)
- Kilean Lucas
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA.
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA.
| | - Jan Hoelzl
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA.
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA.
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
5
|
Riazanski V, Mauleon G, Lucas K, Walker S, Zimnicka AM, McGrath JL, Nelson DJ. Real time imaging of single extracellular vesicle pH regulation in a microfluidic cross-flow filtration platform. Commun Biol 2022; 5:13. [PMID: 35013561 PMCID: PMC8748679 DOI: 10.1038/s42003-021-02965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membranous structures carrying transmembrane proteins and luminal cargo. Their complex cargo requires pH stability in EVs while traversing diverse body fluids. We used a filtration-based platform to capture and stabilize EVs based on their size and studied their pH regulation at the single EV level. Dead-end filtration facilitated EV capture in the pores of an ultrathin (100 nm thick) and nanoporous silicon nitride (NPN) membrane within a custom microfluidic device. Immobilized EVs were rapidly exposed to test solution changes driven across the backside of the membrane using tangential flow without exposing the EVs to fluid shear forces. The epithelial sodium-hydrogen exchanger, NHE1, is a ubiquitous plasma membrane protein tasked with the maintenance of cytoplasmic pH at neutrality. We show that NHE1 identified on the membrane of EVs is functional in the maintenance of pH neutrality within single vesicles. This is the first mechanistic description of EV function on the single vesicle level. Riazanski et al describe a platform to capture extracellular vesicles (EVs) using a nanoporous silicon nitride membrane, investigate the expression of NHE1 protein on the surface of EVs and monitor the transport of Na+ and H+ at the single EV level. The authors report a mechanistic function of the proteins found in EVs and specifically identify NHE1 on a single EV, where it maintains pH neutrality within single vesicles.
Collapse
Affiliation(s)
- Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Gerardo Mauleon
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Adriana M Zimnicka
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Deborah J Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|