1
|
Wang Q, Qian C, Xu N, Liu Q, Wang B, Zhang L, Fan L, Zhou R. Synthesis optimization and separation mechanism of ZSM-5 zeolite membranes for pervaporation dehydration of organic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172641. [PMID: 38670376 DOI: 10.1016/j.scitotenv.2024.172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Pervaporation (PV), as an energy-efficient mixture separation technology, plays an important role in the chemical industry. In this work, no organic templates were needed to produce high-performance ZSM-5 membranes with an extremely low Si/Al ratio of 3.3 on α-Al2O3 tubular supports using 100 nm nanoseeds. The effects of preparation parameters on the crystalline phase structures, micromorphologies, and PV separation performance of ZSM-5 membranes were comprehensively investigated. The results revealed that the Si/Al ratio of gels significantly affected both the Si/Al ratio and the crystal orientation of the final ZSM-5 membrane. The optimized ZSM-5 membrane with a thickness of 1.8 μm was utilized to dehydrate various organic solvents via PV, and the influence of the operating parameters on PV dehydration performance was evaluated and is described herein. Furthermore, the permeation behaviors of single gases and PV were examined using permeate molecules within a similar size range to reveal the PV mechanism of the ZSM-5 membrane. The results demonstrated that gas permeation followed Knudsen diffusion, while PV permeation was decreased with decreases in the affinity of molecules, revealing an adsorption-diffusion mechanism that dominated PV dehydration through the ZSM-5 membrane. Moreover, the as-synthesized ZSM-5 membrane had good water permselectivity for water/acetone (e.g., total flux = 1.03 kg/(m2 h), α = 307) and for water/isopropanol (e.g., total flux = 1.49 kg/(m2 h), α = 1070) mixtures compared with other membranes reviewed in the literature. The synthesized ZSM-5 membrane also exhibited excellent reproducibility, high stability, and attractive PV separation performance, demonstrating its significant potential application in the PV dehydration of organic solvents.
Collapse
Affiliation(s)
- Qing Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Cheng Qian
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Nong Xu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Qiao Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lingyun Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Long Fan
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
2
|
Padinjarekutt S, Sengupta B, Li H, Friedman K, Behera D, Lecaros R, Yu M. Synthesis of Na+-gated nanochannel membranes for the ammonia (NH3) separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Saulat H, Song W, Yang J, Yan T, He G, Tsapatsis M. Fabrication of b-oriented MFI membranes from MFI nanosheet layers by ammonium sulfate modifier for the separation of butane isomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang J, Wang L, Li L, Li J, raza W, Lu J, Yang J. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|