1
|
Wang Z, Liu H, Liu Z, Wang Y, Yang J, Bai L, Wang J, Zhang H, Li G, Liang H. Nanofiltration membranes with fast water transport induced by controlled interfacial diffusion to enhance desalination and micropollutant removal. WATER RESEARCH 2025; 273:123070. [PMID: 39742634 DOI: 10.1016/j.watres.2024.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/03/2025]
Abstract
Nanofiltration (NF) membranes offer tremendous potential in wastewater reuse, desalination, and resource recovery to alleviate water scarcity and environmental contamination. However, separating micropollutants and charged ions from wastewater while maintaining high water permeation remains challenging for conventional NF membranes. Customizing diffusion and interaction behavior of monomers at membrane-forming interfaces is promising for regulating interior pore structures and surface morphology properties for polyamide NF membranes, reaching efficient screening and retaining of solutes from water. In this work, photopolymerization occurred on two-phase interfaces of interfacial polymerization to modulate monomer diffusion toward reaction interfaces, accelerating reaction process and narrowing reaction area thus improving interior pore uniformity and free-volume regularity. Density distributions and interactive energies of monomers at the interface were explored to illustrate the effect of monomer diffusive behavior regulated by photopolymerization on membrane physicochemical properties and separation performance through molecular dynamics simulations. Pore size distributions were simulated to verify experimental results. Layers of nodules and rod-like structures appeared on the membrane surfaces. Membranes with interface photopolymerization exhibited a water permeability of 46.0 L·m-2·h-1·bar-1 more than five-fold that of the control, with improved monovalent and multivalent ions separation. Surface photopolymerized membranes with water permeation of 26.6 L·m-2·h-1·bar-1 (more than three times as high as the control) achieved excellent micropollutant and salt removal. This work provides a foundation for constructing NF membranes with specific separation functions for environmental applications.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haiping Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ying Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
2
|
Zhang H, Liu Q, Zhou P, Zhang H, Xu L, Sun X, Xu J. Co/SH-based MOFs incorporated nanofiltration membranes for efficient selenium uptake in water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136836. [PMID: 39672069 DOI: 10.1016/j.jhazmat.2024.136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Metal-Organic Frameworks (MOFs) with high adsorption capacity have shown potential in removing pollutants from water, particularly the toxic selenium (Se). However, MOFs face two challenges in the application of Se removal, that is low removal efficiency and unfavorable powder properties for recovery. In this study, a Co-MOF-74-SH with dual active adsorption sites was synthesized and subsequently immobilized into membrane to fabricate a multi-functional nanofiltration (NF) membrane for efficient Se removal and salt-salt separation. The strong cooperative interaction between the dual active Co/S sites and Se resulted in an impressive Se removal efficiency of 94.1 % for Co-MOF-74-SH. The adsorption energy and isosurface of electron density from DFT simulations showed the strong interaction between SeO32- and S sites in Co-MOF-74-SH. NF membrane with Co-MOF-74-SH incorporation was fabricated. This membrane showed Se removal of ∼99.6 %, surpassing original membrane of ∼74.4 %, which was attributed to synergetic mechanism of adsorption and separation. Simultaneously, the membrane exhibited excellent separation performance, with divalent/monovalent salt selectivity up to more than 80 as well as high water permeance of 15.80 L m-2 h-1 bar-1. This work not only broadens efficient adsorbents for Se removal, but also paves the way for membrane material for water purification and wastewater resource utilization.
Collapse
Affiliation(s)
- Hansi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Peilei Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Huiting Zhang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lishan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoxia Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
3
|
Peng Q, Wang R, Zhao Z, Lin S, Liu Y, Dong D, Wang Z, He Y, Zhu Y, Jin J, Jiang L. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat Commun 2024; 15:2505. [PMID: 38509082 PMCID: PMC10954764 DOI: 10.1038/s41467-024-46887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Achieving high selectivity of Li+ and Mg2+ is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li+ and Mg2+ ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li+/Mg2+ selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP. The OSARIP benefits to regulate the membrane pores so that all of them are smaller than Mg2+ ions. Under the solely size sieving effect, an exceptional Mg2+ rejection rate of over 99.9% is achieved. This results in an exceptionally high Li+/Mg2+ selectivity, which is one to two orders of magnitude higher than all the currently reported pressure-driven membranes, and even higher than the microporous framework materials, including COFs, MOFs, and POPs. The large enhancement of ion separation performance of NF membranes may innovate the current lithium extraction process and greatly improve the lithium extraction efficiency.
Collapse
Affiliation(s)
- Quan Peng
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zilin Zhao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Dianyu Dong
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zheng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yiman He
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuzhang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| |
Collapse
|
4
|
Suhalim NS, Kasim N, Mahmoudi E, Shamsudin IJ, Jamari NLA, Mohamed Zuki F. Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes. MEMBRANES 2023; 13:602. [PMID: 37367806 DOI: 10.3390/membranes13060602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The utilization of membranes has been extensively employed in the treatment of water and wastewater. Membrane fouling, attributed to the hydrophobic nature of membranes, constitutes a noteworthy concern in the realm of membrane separation. The mitigation of fouling can be achieved through the modification of membrane characteristics, including but not limited to hydrophilicity, morphology, and selectivity. In this study, a nanohybrid polysulfone (PSf) membrane embedded with silver-graphene oxide (Ag-GO) was fabricated to overcome problems related to biofouling. The embedment of Ag-GO nanoparticles (NPs) is the aim towards producing membranes with antimicrobial properties. The fabricated membranes at different compositions of NPs (0 wt%, 0.3 wt%, 0.5 wt%, and 0.8 wt%) are denoted as M0, M1, M2, and M3, respectively. These PSf/Ag-GO membranes were characterized using FTIR, water contact angle (WCA) goniometer, FESEM, and salt rejection. The additions of GO significantly improved the hydrophilicity of PSf membranes. An additional OH peak at 3380.84 cm-1 of the nanohybrid membrane from FTIR spectra may be related to hydroxyl (-OH) groups of GO. The WCA of the fabricated membranes decreased from 69.92° to 54.71°, which confirmed the improvement in its hydrophilicity. In comparison to the pure PSf membrane, the morphology of the finger-like structure of the fabricated nanohybrid membrane slightly bent with a larger bottom part. Among the fabricated membranes, M2 achieved the highest iron (Fe) removal, up to 93%. This finding proved that the addition of 0.5 wt% Ag-GO NPs enhanced the membrane water permeability together with its performance of ionic solute removal (Fe2+) from synthetic groundwater. In conclusion, embedding a small amount of Ag-GO NPs successfully improved the hydrophilicity of PSf membranes and was able to achieve high removal of Fe at 10-100 mg L-1 towards purification of groundwater for safe drinking water.
Collapse
Affiliation(s)
- Nur Syahirah Suhalim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Norherdawati Kasim
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Intan Juliana Shamsudin
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Nor Laili-Azua Jamari
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Wang Z, Cao J, Zhang F, Zhang X, Tan X. Combining phthalimide innate of a positive-charge nanofiltration membrane for high selectivity and rejection for bivalent cations. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2944-2955. [PMID: 37318934 PMCID: wst_2023_178 DOI: 10.2166/wst.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A positively charged nanofiltration (NF) membrane is known to have exceptional separation performance for bivalent cations in aqueous solutions. In this study, a new NF activity layer was created using interfacial polymerization (IP) on a polysulfone (PSF) ultrafiltration substrate membrane. The aqueous phase combines the two monomers of polyethyleneimine (PEI) and phthalimide, while successfully producing a highly efficient and accurate NF membrane. The conditions of the NF membrane were studied and further optimized. The aqueous phase crosslinking process enhances the polymer interaction, resulting in an excellent pure water flux of 7.09 L·m-2·h-1·bar-1 under a pressure of 0.4 MPa. Additionally, the NF membrane shows excellent selectivity toward inorganic salts, with a rejection order of MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl. Under optimal conditions, the membrane was able to reject up to 94.33% of 1,000 mg/L of MgCl2 solution at an ambient temperature. Further to assess the antifouling properties of the membrane with bovine serum albumin (BSA), the flux recovery ratio (FRR) was calculated to be 81.64% after 6 h of filtration. This paper presents an efficient and straightforward approach to customize a positively charged NF membrane. We achieve this by introducing phthalimide, which enhances the membrane's stability and rejection performance.
Collapse
Affiliation(s)
- Zhe Wang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Jiawei Cao
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Fan Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xinai Tan
- Dayu Environmental Protection Co., Ltd, Tianjin 301739, China
| |
Collapse
|
6
|
Ding Y, Yuan J, Wang L, Jin N, Wang S, Li Y, Lin J. Semi-circle magnetophoretic separation under rotated magnetic field for colorimetric biosensing of Salmonella. Biosens Bioelectron 2023; 229:115230. [PMID: 36940661 DOI: 10.1016/j.bios.2023.115230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Magnetic separation was often applied to isolate and concentrate foodborne bacteria using immunomagnetic nanobeads before downstream bacterial detection. However, nanobead-bacteria conjugates (magnetic bacteria) were coexisting with excessive unbound nanobeads, limiting these nanobeads on magnetic bacteria to further act as signal probes for bacterial detection. Here, a new microfluidic magnetophoretic biosensor was elaboratively developed using a rotated high gradient magnetic field and platinum modified immunomagnetic nanobeads for continuous-flow isolation of magnetic bacteria from free nanobeads, and combined with nanozyme signal amplification for colorimetric biosensing of Salmonella. First, the platinum modified immunomagnetic nanobeads were mixed with the bacterial sample to form the magnetic bacteria, and magnetically separated to eliminate non-magnetic background. Then, the mixture of free immunomagnetic nanobeads and magnetic bacteria was injected with sheath flow (PBS) at higher flowrate into the semi-circle magnetophoretic separation channel under rotated magnetic field, which was generated by two repulsive cylindric magnets and their in-between ring iron gear, leading to continuous-flow isolation of magnetic bacteria from free immunomagnetic nanobeads because they suffered from different magnetic forces and thus had different deviating positions at the outlet. Finally, the separated magnetic bacteria and unbound magnetic nanobeads were respectively collected and used to catalyze coreless substrate into blue product, which was further analyzed using the microplate reader to obtain bacterial amount. This biosensor could determinate Salmonella as low as 41 CFU/mL in 40 min.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Jing Yuan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Nana Jin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Cheng J, Li Z, Bao X, Zhang R, Zhang Z, Hai G, Sun K, Shi W. Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Wang Y, Chang H, Jiang S, Chen J, Wang J, Liang H, Li G, Tang X. An efficient co-solvent tailoring interfacial polymerization for nanofiltration: Enhanced selectivity and mechanism. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Zhou Z, Lu TD, Sun SP, Wang Q. Roles and gains of coordination chemistry in nanofiltration membrane: A review. CHEMOSPHERE 2023; 318:137930. [PMID: 36693478 DOI: 10.1016/j.chemosphere.2023.137930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The nanofiltration (NF) membranes with the specific separation accuracy for molecules with the size of 0.5-2 nm have been applied in various industries. However, the traditional polymeric NF membranes still face problems like the trade-off effect, organic solvent consumption, and weak durability in harsh conditions. The participation of coordination action or metal-organic coordination compounds (MOCs) brings the membrane with uniform pores, better antifouling properties, and high hydrophilicity. Some of the aqueous-phase reactions also help to introduce a green fabrication process to NF membranes. This review critically summarizes the recent research progress in coordination chemistry relevant NF membranes. The participation of coordination chemistry was classified by the various functions in NF membranes like additives, interlayers, selective layers, coating layers, and cross-linkers. Then, the effect and mechanism of the coordination chemistry on the performance of NF membranes are discussed in depth. Perspectives are given for the further promotion that coordination chemistry can make in NF processes. This review also provides comprehensive insight and constructive guidance on high-performance NF membranes with coordination chemistry.
Collapse
Affiliation(s)
- Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Tian-Dan Lu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
10
|
Triethanolamine-based zwitterionic polyester thin-film composite nanofiltration membranes with excellent fouling-resistance for efficient dye and antibiotic separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Asymmetric polyamide nanofilm with coordinated charge and nanopore, tuned by azlactone-based monomer to facilitate ion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Liu J, Abdirahman AA, Wang X, Su Y. Assembly of polyamide nanofilms for nanofiltration membranes with ultra-high desalination performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Xu P, Gonzales RR, Hong J, Guan K, Chiao YH, Mai Z, Li Z, Rajabzadeh S, Matsuyama H. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Liu Y, Li Q, Wang S, Liang M, Ji Y, Cui Z, Younas M, Li J, He B. A nanofiltration membrane with positively and negatively charged groups by grafted p-aminosalicylic acid-Fe(III) chelation for Li+/Mg2+ efficient separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Gan F, Jiang S, Zhou J, Wang J, Wen J, Mo J, Han S, Fan L, Yi N, Wu Y. Architecting dual coordination interactions in polyimide for constructing structurally controllable high-performance nanofiltration membranes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
High-permeance Mg2+/Li+ separation nanofiltration membranes intensified by quadruple imidazolium salts. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Zong Y, Zhang R, Gao S, Tian J. Performance regulation of a thin film composite (TFC) NF membrane by low-temperature interfacial polymerization assisted by the volatilization of n-hexane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Zhang Y, Guo Y, Wan Y, Pan G, Yu H, Du W, Shi H, Zhao M, Zhao G, Wu C, Liu Y. Tailoring molecular structure in the active layer of thin-film composite membrane for extreme pH condition. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Khashij M, Mokhtari M, Dalvand A, Haghiralsadat F, Fallahzadeh H, Hossein Salmani M. Recycled PET/metal oxides nanocomposite membrane for treatment of real industrial effluents: Membrane fabrication, stability, antifouling behavior, and process modeling and optimization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Divya S, Oh TH. Polymer Nanocomposite Membrane for Wastewater Treatment: A Critical Review. Polymers (Basel) 2022; 14:polym14091732. [PMID: 35566901 PMCID: PMC9100919 DOI: 10.3390/polym14091732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such membranes have limited applications. Nanocomposite membranes, which are formed by adding nanofillers to polymeric membrane matrices, can enhance the filtration process. Considerable attention has been given to nanofillers, which include carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined the current status of membrane technologies for water filtration, polymeric nanocomposite membranes, and their applications. Additionally, we highlight the challenges faced in water treatment in developing countries.
Collapse
|
22
|
Suhalim NS, Kasim N, Mahmoudi E, Shamsudin IJ, Mohammad AW, Mohamed Zuki F, Jamari NLA. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:437. [PMID: 35159781 PMCID: PMC8839881 DOI: 10.3390/nano12030437] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022]
Abstract
The toxicity of heavy metals can cause water pollution and has harmful effects on human health and the environment. Various methods are used to overcome this pressing issue and each method has its own advantages and disadvantages. Membrane filtration technology such as nanofiltration (NF) produces high quality water and has a very small footprint, which results in lower energy usage. Nanofiltration is a membrane-based separation technique based on the reverse osmosis separation process developed in the 1980s. NF membranes have a pore size of 1 nm and molecular weight cut off (MWCO) of 300 to 500 Da. The properties of NF membranes are unique since the surface charge of the membranes is dependent on the functional groups of the membrane. The rejection mechanism of NF membrane is unique as it is a combination of various rejection mechanisms such as steric hindrance, electric exclusion, dielectric effect, and hydration mechanism. However, these mechanisms have not been studied in-depth due to their complexity. There are also many factors contributing to the rejection of NF membrane. Many junior researchers would face difficulty in studying NF membrane. Therefore, this paper is designed for researchers new to the field, and will briefly review the rejection mechanisms of NF membrane by both sieving and non-sieving separation processes. This mini-review aims to provide new researchers with a general understanding of the concept of the separation process of charged membranes.
Collapse
Affiliation(s)
- Nur Syahirah Suhalim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - Norherdawati Kasim
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (I.J.S.); (N.L.-A.J.)
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Intan Juliana Shamsudin
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (I.J.S.); (N.L.-A.J.)
| | - Abdul Wahab Mohammad
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nor Laili-Azua Jamari
- Department of Chemistry & Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia; (I.J.S.); (N.L.-A.J.)
| |
Collapse
|