1
|
Li N, Xue W, Han Y, Zhu B, Wu J, Xu Z. Defect Engineering in GO Membranes - Tailoring Size and Oxidation Degree of Nanosheet for Enhanced Pore Channels. Chem Asian J 2024:e202301065. [PMID: 38329385 DOI: 10.1002/asia.202301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Graphene Oxide (GO) membrane has been extensively applied in the field of water purification and membrane separation processes. While the solute molecule transport in GO membranes encompasses interlayer channels, edge defects, and in-plane crack-like holes, the significance of edge defects or crack-like pores in ultrathin membranes is often overlooked. In our study, we focused on the construction of short-range channel GO membranes with varied defect structures by modulating the transverse size of the porous nanosheets. GO nanosheets with different sizes were procured through high-energy γ-irradiation combined with centrifugation. Notably, the large-sized porous GO nanosheets (L-pGO) exhibit a consistent structure, and numerous in-plane defects. In contrast, the smaller counterparts (S-pGO) present a fewer in-plane defects. The performance metrics revealed that L-pGO exhibited a water flux of 849.25 L m-2 h-1 bar-1 , while S-pGO demonstrated nearly 100 % dye rejection capacity. These findings underscore the potential of defect engineering as a powerful strategy to enhance the efficiency of two-dimensional membranes.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Weihao Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Yu Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Jinman Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Ahmad T, Rehman LM, Al-Nuaimi R, de Levay JPBB, Thankamony R, Mubashir M, Lai Z. Thermodynamics and kinetic analysis of membrane: Challenges and perspectives. CHEMOSPHERE 2023; 337:139430. [PMID: 37422221 DOI: 10.1016/j.chemosphere.2023.139430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The ultimate structure of the membrane is determined using two important effects: (i) thermodynamic effect and (ii) kinetic effect. Controlling the mechanism of kinetic and thermodynamic processes in phase separation is essential for enhancing membrane performance. However, the relationship between system parameters and the ultimate membrane morphology is still largely empirical. This review focuses on the fundamental ideas behind thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods, including both kinetic and thermodynamic elements. The thermodynamic approach to understanding phase separation and the effect of different interaction parameters on membrane morphology has been discussed in detail. Furthermore, this review explores the capabilities and limitations of different macroscopic transport models used for the last four decades to explore the phase inversion process. The application of molecular simulations and phase field to understand phase separation has also been briefly examined. Finally, it discusses the thermodynamic approach to understanding phase separation and the consequence of different interaction parameters on membrane morphology, as well as possible directions for artificial intelligence to fill the gaps in the literature. This review aims to provide comprehensive knowledge and motivation for future modeling work for membrane fabrication via new techniques such as nonsolvent-TIPS, complex-TIPS, non-solvent assisted TIPS, combined NIPS-TIPS method, and mixed solvent phase separation.
Collapse
Affiliation(s)
- Tausif Ahmad
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lubna M Rehman
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al-Nuaimi
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Mubashir
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Wei M, Li B, Wu L. Structure Transformation and Morphologic Modulation of Supramolecular Frameworks for Nanoseparation and Enzyme Loading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207047. [PMID: 37060107 DOI: 10.1002/advs.202207047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Indexed: 06/04/2023]
Abstract
Supramolecular framework (SF) encourages the emergence of porous structures with molecular flexibility while the dimension and morphology controls are less involved even though critical factors are vital for various utilizations. Targeting this purpose, two isolated components are designed and their stepped combinations via ionic interaction, metal coordination, and hydrogen bond into framework assembly with two morphologic states are realized. The zinc coordination to an ionic complex of polyoxometalate with three cationic terpyridine ligands constructs 2D hexagonal SF structure. A further growth along perpendicular direction driven by hydrogen bonding between grafted mannose groups leads to 3D SF assemblies, providing a modulation superiority in one framework for multiple utilizations. The large area of multilayered SF sheet affords a filtration membrane for strict separation of nanoparticles/proteins under gently reduced pressures while the granular SF assembly demonstrates an efficient carrier to load and fix horse radish peroxidase with maintained activity for enzymatic catalysis.
Collapse
Affiliation(s)
- Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
5
|
Three-dimensional ordered macroporous MOF-based smart gating membrane with size screening effect and aptamer specificity for highly efficient thrombin isolation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
7
|
Yadav D, Borpatra Gohain M, Karki S, Ingole PG. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS OMEGA 2022; 7:47967-47985. [PMID: 36591113 PMCID: PMC9798531 DOI: 10.1021/acsomega.2c05861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The separation of biomacromolecules, mainly proteins, plays a significant role in the pharmaceutical and food industries. Among the membranes' techniques, thin-film nanocomposite nanofiltration membranes are the best choice due to their high energy efficiency, excellent productivity, cost-effective and tuneable properties that have captured the attention of the efficient separation of biomacromolecules, especially from the industrial perspective. The present work directs the efficient separation study of proteins, namely, lysozyme, trypsin, pepsin, bovine serum albumin (BSA), and cephalexin, using a thin-film nanocomposite membrane integrated with Arg-MMT (arginine-montmorillonite) clay nanoparticles. The surface morphology and cross-section images of the TFN membranes were studied using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM). The thermal stability and hydrophilicity of the membranes were examined using thermogravimetric analysis (TGA) and contact angle, respectively. The surface chemistry of the selective layer has different functional groups that were analyzed using FTIR spectroscopy. The performance of the membranes was studied at different trans-membrane pressures and permeation times. The effect of monomer concentration on the separation performance of the membranes was also studied at different permeation times. The membranes' antibacterial activity was evaluated using the Muller-Hinton disk diffusion method using gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) bacteria. The highest rejection was achieved for BSA up to 98.92 ± 1%, and the highest permeation was obtained against lysozyme feed solution up to 26 L m-2 h-1 at 5 bar pressure. The membrane also illustrated excellent rejection of cephalexin antibiotics with a rejection of 98.17 ± 1.75% and a permeation flux of 26.14 L m-2 h-1. The antifouling study performed for the membranes exhibited a flux recovery ratio of 86.48%. The fabricated thin-film nanocomposite membrane demonstrated a good alternative for the separation of biomacromolecules and has the potential to be used in different sectors of industry, especially the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Diksha Yadav
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Moucham Borpatra Gohain
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Sachin Karki
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
8
|
Boosting the permeation of ultrafiltration membranes by covalent organic frameworks nanofillers: Nanofibers doing better than nanoparticles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Martinez J, Fan S, Rabade S, Blevins AK, Fung K, Killgore JP, Perez SB, Youngbear K, Carbrello C, Foley S, Ding X, Long R, Castro R, Ding Y. Capillary infiltration kinetics in highly asymmetric porous membranes and the resulting debonding behaviors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zhou JY, Shen Y, Yin MJ, Wang ZP, Wang N, Qin Z, An QF. Polysulfate membrane prepared with a novel porogen for enhanced ultrafiltration performance. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Ye H, Zhou Y, Yang G, Yu T, Zhang Y, Zhao L, Xin Q, Han S. Protein fractionation of pH‐responsive brush‐modified ethylene vinyl alcohol copolymer membranes*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Yining Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Guodong Yang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Tengfei Yu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Shurui Han
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| |
Collapse
|