1
|
Wu Y, Niu J, Yuan X, Liu Y, Zhai S, Zhao Y. Polydopamine and calcium functionalized fiber carrier for enhancing microbial attachment and Cr(VI) resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166626. [PMID: 37643709 DOI: 10.1016/j.scitotenv.2023.166626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The formation of biofilm determines the performance and stability of biofilm system. Increasing the hydrophilicity of the carrier surface could efficiently accelerate the attachment and growth of microorganisms. Here, the surface of polypropylene (PP) fiber carrier was modified with polydopamine (PDA) and calcium (Ca(II)) to enhance microbial attachment and toxicity resistance. The results of surface characteristic confirmed the self-polymerization of PDA and the chelation mechanism of Ca(II). Subsequently, the biofilm formation experiments were conducted in sequencing batch biofilm reactors using both normal and chromium-containing wastewater. The biofilm on the surface of the modified carrier exhibited better nitrogen removal and Cr(VI) reduction ability. The biomass of the modified carrier was significantly increased, and the maximum microbial attachment amounts in normal wastewater and chrome-containing wastewater were 1153.34 and 511.78 mg/g carrier, respectively. Furthermore, the confocal laser scanning microscope (CLSM) indicated that the modified carrier coated with PDA and Ca(II) were both biocompatible, and the cell activity was significantly increased. 16S rRNA sequencing results showed that the modified carrier efficiently enriched both denitrification bacteria (Thauera and Flavobacterium) and chrome-reducing bacteria (Simplicispira and Arenimonas) to improve system stability and Cr(VI) resistance. Microbial phenotype prediction based on BugBase analysis further verified the enrichment effect of modified carriers on microorganisms responsible for biofilm formation and oxidative stress resistance. Overall, this work proposed a novel functional carrier that could provide references for advancing the application of biofilm systems in wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhang J, Yang Y, Sun Z, Zhao D, Gao Y, Shen T, Li Y, Xie Z, Huo Y, Li H. Ag@BiOBr/PVDF photocatalytic membrane for remarkable BSA anti-fouling performance and insight of mechanism. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
4
|
Polydopamine-modified ceramic membrane for filtering brown sugar redissolved syrup: Characterisation, experiments, and advanced modelling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yang Y, Song C, Wang P, Fan X, Xu Y, Dong G, Liu Z, Pan Z, Song Y, Song C. Insights into the impact of polydopamine modification on permeability and anti-fouling performance of forward osmosis membrane. CHEMOSPHERE 2022; 291:132744. [PMID: 34743795 DOI: 10.1016/j.chemosphere.2021.132744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) has drawn wide attention as a promising method to address world-wide water crisis due to the advantages of low-energy consumption and easy separation operation. Unfortunately, the trade-off between permeability and selectivity as well as membrane fouling hindered the application of forward osmosis. Surface modification is a feasible method to address these issues. However, there is a lack of systematic evaluation about the effect of modification position on FO performance due to the asymmetric structure of thin film composite (TFC) FO membrane. To provide new insights into the design of FO membrane with satisfied permeability and fouling resistance, novel TFC FO membranes were fabricated by introducing polydopamine (PDA) on the support layer (TFC-I) or active layer (TFC-S), respectively. The surface morphology, chemical composition and wettability of the fabricated membrane were studied. It was found that the surface wettability of the modified membrane was improved greatly compared to pristine TFC membrane (TFC-C). Moreover, TFC-S membrane displayed a rougher surface than that of TFC-I membrane. As a result, a superior TFC-S membrane with a water flux of 60.95 ± 3.15 L m-2h-1 in AL-DS mode was obtained, which was 72.61% and 17.87% higher than that of TFC-C and TFC-I membrane, respectively. In addition, the TFC-S membrane also presented an excellent fouling resistance and membrane regeneration performance during the three organic fouling cycle experiments. The results indicated that the introduction of PDA as a surface coating for TFC membranes modification guaranteed the high-performance and fouling resistance. Especially, the PDA coating on the support layer surface resulted in an enhancement in permeability, while both the permeability and anti-fouling performance were significantly improved with the PDA coating on the polyamide active layer surface. This study provides new insights into the development of modification TFC-FO membranes for practical applications in water treatment.
Collapse
Affiliation(s)
- Yi Yang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chunyang Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Guanming Dong
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Zhijian Liu
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| |
Collapse
|
8
|
Azmi FI, Goh PS, Ismail AF, Hilal N, Wong TW, Misson M. Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress. MEMBRANES 2022; 12:148. [PMID: 35207070 PMCID: PMC8874482 DOI: 10.3390/membranes12020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
The implementation of membrane surface modification to enhance the performance of membrane-based separation has become a favored strategy due to its promise to address the trade-off between water permeability and salt rejection as well as to improve the durability of the membranes. Tremendous work has been committed to modifying polymeric membranes through physical approaches such as surface coating and ontology doping, as well as chemical approaches such as surface grafting to introduce various functional groups to the membrane. In the context of liquid separation membranes applied for desalination and water and wastewater treatment, biomolecules have gained increasing attention as membrane-modifying agents due to their intriguing structural properties and chemical functionalities. Biomolecules, especially carbohydrates and proteins, exhibit attractive features, including high surface hydrophilicity and zwitterionic and antimicrobial properties that are desired for liquid separation membranes. In this review, we provide an overview of the recent developments in biomolecule-enabled liquid separation membranes. The roles and potentials of some commonly explored biomolecules in heightening the performance of polymeric membranes are discussed. With the advancements in material synthesis and the need to answer the call for more sustainable materials, biomolecules could serve as attractive alternatives for the development of high-performance composite membranes.
Collapse
Affiliation(s)
- Faiz Izzuddin Azmi
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Tuck Whye Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| |
Collapse
|