1
|
Bao J, Li S, Zhang X, Zhang N. An Energy-Economic-Environment Tri-Objective Evaluation Method for Gas Membrane Separation Processes of H 2/CO 2. MEMBRANES 2023; 14:3. [PMID: 38276316 PMCID: PMC10820163 DOI: 10.3390/membranes14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
For pre-combustion carbon capture, the high syngas pressure provides a sufficient mass transfer driving force to make the gas membrane separation process an attractive option. Comparisons of combined different membrane materials (H2-selective and CO2-selective membranes) and membrane process layouts are very limited. Especially, the multi-objective optimization of such processes requires further investigation. Therefore, this paper proposes 16 two-stage combined membranes system for pre-combustion CO2 capture, including 4 two-stage H2-selective membrane systems, 4 two-stage CO2-selective membrane systems, and 8 two-stage hybrid membrane systems. A tri-objective optimization method of energy, economy, and environment is proposed for comprehensive evaluation of the proposed systems. Results show that with the targets of 90% CO2 purity and recovery, six gas membrane separation systems could be satisfied. After further multi-objective optimization and comparison, the C1H2-4 system (the hybrid system with H2-selective membranes and CO2-selective membranes) has the best performance. Feed composition and separation requirements also have an important influence on the multi-objective optimization results. The effects of selectivity and permeance of H2-selective and CO2-selective membranes on the performance of the C1H2-4 system are also significant.
Collapse
Affiliation(s)
- Junjiang Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; (J.B.); (S.L.); (X.Z.)
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Shuai Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; (J.B.); (S.L.); (X.Z.)
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaopeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; (J.B.); (S.L.); (X.Z.)
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; (J.B.); (S.L.); (X.Z.)
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
2
|
Ni Z, Cao Y, Zhang X, Zhang N, Xiao W, Bao J, He G. Synchronous Design of Membrane Material and Process for Pre-Combustion CO 2 Capture: A Superstructure Method Integrating Membrane Type Selection. MEMBRANES 2023; 13:318. [PMID: 36984705 PMCID: PMC10052152 DOI: 10.3390/membranes13030318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Membrane separation technology for CO2 capture in pre-combustion has the advantages of easy operation, minimal land use and no pollution and is considered a reliable alternative to traditional technology. However, previous studies only focused on the H2-selective membrane (HM) or CO2-selective membrane (CM), paying little attention to the combination of different membranes. Therefore, it is hopeful to find the optimal process by considering the potential combination of H2-selective and CO2-selective membranes. For the CO2 capture process in pre-combustion, this paper presents an optimization model based on the superstructure method to determine the best membrane process. In the superstructure model, both CO2-selective and H2-selective commercial membranes are considered. In addition, the changes in optimal membrane performance and capture cost are studied when the selectivity and permeability of membrane change synchronously based on the Robeson upper bound. The results show that when the CO2 purity is 96% and the CO2 recovery rate is 90%, the combination of different membrane types achieves better results. The optimal process is the two-stage membrane process with recycling, using the combination of CM and HM in all situations, which has obvious economic advantages compared with the Selexol process. Under the condition of 96% CO2 purity and 90% CO2 recovery, the CO2 capture cost can be reduced to 11.75$/t CO2 by optimizing the process structure, operating parameters, and performance of membranes.
Collapse
Affiliation(s)
- Zhiqiang Ni
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yue Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaopeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Junjiang Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
3
|
Micari M, Duan X, Agrawal KV. Atmospheric water harvesting in semi-arid regions by membranes: A techno-economic assessment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Rao S, Han Y, Ho WSW. Recent advances in polymeric membranes for carbon dioxide capture from syngas. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shraavya Rao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Yang Han
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - W. S. Winston Ho
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes. MEMBRANES 2022; 12:membranes12040399. [PMID: 35448369 PMCID: PMC9031579 DOI: 10.3390/membranes12040399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
A membrane-based system with a retentate recycle process in tandem with an enriching cascade was studied for >90% carbon capture from coal flue gas. A highly CO2-selective facilitated transport membrane (FTM) was utilized particularly to enhance the CO2 separation efficiency from the CO2-lean gases for a high capture degree. A techno-economic analysis showed that the retentate recycle process was advantageous for ≤90% capture owing to the reduced parasitic energy consumption and membrane area. At >90% capture, the enriching cascade outperformed the retentate recycle process since a higher feed-to-permeate pressure ratio could be applied. An overall 99% capture degree could be achieved by combining the two processes, which yielded a low capture cost of USD47.2/tonne, whereas that would be USD 42.0/tonne for 90% capture. This FTM-based approach for deep carbon capture and storage can direct air capture for the mitigation of carbon emissions in the energy sector.
Collapse
|