1
|
Wang F, Xiao L, Jiang Y, Liu X, Zhao X, Kong Q, Abdukayum A, Hu G. Recent achievements in noble metal-based oxide electrocatalysts for water splitting. MATERIALS HORIZONS 2025; 12:1757-1795. [PMID: 39764744 DOI: 10.1039/d4mh01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The search for sustainable energy sources has accelerated the exploration of water decomposition as a clean H2 production method. Among the methods proposed, H2 production via water electrolysis has garnered considerable attention. However, the process of H2 production from water electrolysis is severely limited by the slow kinetics of the anodic oxygen evolution reaction and large intrinsic overpotentials at the anode; therefore, suitable catalysts need to be found to accelerate the reaction rate. Noble metal-based oxide electrocatalysts retain the advantages of abundant active sites, high electrical conductivity of noble metals, and low cost, which make them promising electrocatalysts; however, they suffer from the challenge of an imbalance between catalytic activity and stability. This review presents recent research progress in noble metals and their oxides as electrocatalysts. In this review, two half-reactions (the hydrogen evolution reaction and the oxygen evolution reaction) of water electrolysis are described. Recently reported methods for the synthesis of noble metal-based oxide electrocatalysts, improvement strategies, and sources of enhanced activity and stability for these types of catalysts are presented. Finally, the challenges and future perspectives in the field are summarised. This review is expected to help improve the understanding of noble metal-based oxide electrocatalysts.
Collapse
Affiliation(s)
- Feng Wang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Yuwei Jiang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
2
|
Wan L, Pang M, Le J, Xu Z, Zhou H, Xu Q, Wang B. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat Commun 2022; 13:7956. [PMID: 36575177 PMCID: PMC9794718 DOI: 10.1038/s41467-022-35603-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The application of membrane electrode assemblies is considered a promising approach for increasing the energy efficiency of conventional alkaline water electrolysis. However, previous investigations have mostly focused on improving membrane conductivity and electrocatalyst activity. This study reports an all-in-one membrane electrode assembly obtained by de novo design. The introduction of a porous membrane readily enables the oriented intergrowth of ordered catalyst layers using solvothermal methods, leading to the formation of an all-in-one MEA for alkaline water electrolysis. This all-in-one MEA features ordered catalyst layers with large surface areas, a low-tortuosity pore structure, integrated catalyst layer/membrane interfaces, and a well-ordered OH- transfer channel. Owing to this design, a high current density of 1000 mA cm-2 is obtained at 1.57 V in 30 wt% KOH, resulting in a 94% energy efficiency. This work highlights the prospects of all-in-one membrane electrode assemblies in designing next-generation high-performance alkaline water electrolysis.
Collapse
Affiliation(s)
- Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Maobin Pang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Junfa Le
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ziang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Hangyu Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qin Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Baoguo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Te Vrugt M, Wittkowski R. Perspective: New directions in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:041501. [PMID: 35917827 DOI: 10.1088/1361-648x/ac8633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Bender J, Mayerhöfer B, Trinke P, Bensmann B, Hanke-Rauschenbach R, Krajinovic K, Thiele S, Kerres J. H +-Conducting Aromatic Multiblock Copolymer and Blend Membranes and Their Application in PEM Electrolysis. Polymers (Basel) 2021; 13:polym13203467. [PMID: 34685226 PMCID: PMC8541206 DOI: 10.3390/polym13203467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/25/2022] Open
Abstract
As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components’ ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component’s high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.
Collapse
Affiliation(s)
- Johannes Bender
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
| | - Britta Mayerhöfer
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
| | - Patrick Trinke
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Boris Bensmann
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Richard Hanke-Rauschenbach
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Katica Krajinovic
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
- Department Chemie- und Bioingenieurwesen, Friedrich-Alexander Universität Erlangen-Nürnberg, Immerwahrstr. 2a, 91058 Erlangen, Germany
| | - Jochen Kerres
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
- Chemical Resource Beneficiation Faculty of Natural Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence:
| |
Collapse
|