1
|
Castillo-Ruiz M, Negrete C, Espinoza JP, Martínez I, Daille LK, González C, Rodríguez B. Antibiofilm Effects of Modifying Polyvinylidene Fluoride Membranes with Polyethylenimine, Poly(acrylic acid) and Graphene Oxide. Polymers (Basel) 2024; 16:3418. [PMID: 39684163 DOI: 10.3390/polym16233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Biofouling in membrane filtration systems poses significant operational challenges, leading to decreased permeate flux. The aim of this work was to study the anti-biofilm properties of new nanofiltration membranes produced via layer-by-layer, LBL, assembly by coating a polyvinylidene fluoride (PVDF) support with a polyethylenimine (PEI) and poly(acrylic acid)/graphene oxide (PAA-GO) mixture. The membranes were characterized according to contact angle, scanning electron microscopy (SEM), atomic force microscopy and their Z-potential. Biofilm quantification and characterization were carried out using crystal violet staining and SEM, while bacterial viability was assessed by using colony-forming units. The membrane with three bilayers ((PAA-PEI)3/PVDF) showed a roughness of 77.78 nm. The incorporation of GO ((GO/PAA-PEI)3/PVDF) produced a membrane with a smoother surface (roughness of 26.92 nm) and showed salt rejections of 16% and 68% for NaCl and Na2SO4, respectively. A significant reduction, ranging from 82.37 to 77.30%, in biofilm formation produced by S. aureus and E. coli were observed on modified membranes. Additionally, the bacterial viability on the modified membranes was markedly reduced (67.42-99.98%). Our results show that the modified membranes exhibited both antibiofilm and antimicrobial capacities, suggesting that these properties mainly depend on the properties of the modifying agents, as the initial adherence on the membrane surface was not totally suppressed, but the proliferation and formation of EPSs were prevented.
Collapse
Affiliation(s)
- Mario Castillo-Ruiz
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago 8370134, Chile
| | - Constanza Negrete
- Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa 7800003, Chile
| | - Juan Pablo Espinoza
- CIBQA, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Fábrica 1865, Santiago 8320000, Chile
| | - Iván Martínez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Leslie K Daille
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile
| | - Christopher González
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Bárbara Rodríguez
- CIRENYS, Escuela de Química y Farmacia, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile
| |
Collapse
|
2
|
Cai X, Pang S, Zhang M, Teng J, Lin H, Xia S. Predicting thermodynamic adhesion energies of membrane fouling in planktonic anammox MBR via backpropagation neural network model. BIORESOURCE TECHNOLOGY 2024; 406:131011. [PMID: 38901751 DOI: 10.1016/j.biortech.2024.131011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔGAB), electrostatic double layer (ΔGEL), and Lifshitz-van der Waals (ΔGLW) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.
Collapse
Affiliation(s)
- Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Cai X, Wang A, Dai B, Wang Z, Xia S. Insights into the membrane biofouling behavior of planktonic anammox bacteria: Effect of solution pH and ionic strength. CHEMOSPHERE 2023; 329:138656. [PMID: 37040838 DOI: 10.1016/j.chemosphere.2023.138656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Understanding the effect of solution pH and ionic strength on membrane biofouling of anammox bacteria is essential for the widespread application of anammox MBRs. To provide an original elucidation, this study combined interfacial thermodynamics analysis and filtration experiments with an established planktonic anammox MBR to explore the biofouling behavior of anammox bacteria under varying solution pH and ionic strengths. Preliminary results showed that variation in solution pH and ionic strength has critical impacts on the thermodynamic properties of planktonic anammox bacteria and membrane surfaces. The further interfacial thermodynamics analysis and filtration experiments indicated that an increased pH and a decreased ionic strength could reduce membrane fouling by planktonic anammox bacteria. More specifically, a higher pH or lower ionic strength resulted in a stronger repulsive energy barrier due to the larger interaction distance covered by the dominant electrostatic double layer (EL) component compared to the Lewis acid-base (AB) and Lifshitz-van der Waals (LW) components, which corresponded to a reduction in the normalized flux (J/J0) decline and the accumulation of cake resistance (Rc) during the filtration process. Furthermore, the aforementioned effect mechanism was verified by a correlation analysis of the thermodynamic properties and filtration behavior. These findings have generalized significance for understanding the biofouling or aggregation behavior of anammox bacteria.
Collapse
Affiliation(s)
- Xiang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
4
|
Song Z, Sun F, Xing D, Liao R, Zhang X, Wang M, Su X, Wen Z, Dong W. Integrating electrochemical pre-treatment with carrier-based membrane bioreactor for efficient treatment of municipal waste transfer stations leachate. BIORESOURCE TECHNOLOGY 2023; 379:129003. [PMID: 37019412 DOI: 10.1016/j.biortech.2023.129003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zheng Wen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
5
|
Constructing (reduced) graphene oxide enhanced polypyrrole /ceramic composite membranes for water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Manderfeld E, Thamaraiselvan C, Nunes Kleinberg M, Jusufagic L, Arnusch CJ, Rosenhahn A. Bacterial surface attachment and fouling assay on polymer and carbon surfaces using Rheinheimera sp. identified using bacteria community analysis of brackish water. BIOFOULING 2022; 38:940-951. [PMID: 36511186 DOI: 10.1080/08927014.2022.2153333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces in contact with sea- or brackish water can severely impact the function of devices like reverse osmosis modules. Single species laboratory assays are frequently used to test new low fouling materials. The choice of bacterial strain is guided by the natural population present in the application of interest and decides on the predictive power of the results. In this work, the analysis of the bacterial community present in brackish water from Mashabei Sadeh, Israel was performed and Rheinheimera sp. was detected as a prominent microorganism. A Rheinheimera strain was selected to establish a short-term accumulation assay to probe initial bacterial attachment as well as biofilm growth to determine the biofilm-inhibiting properties of coatings. Both assays were applied to model coatings, and technically relevant polymers including laser-induced graphene. This strategy might be applied to other water sources to better predict the fouling propensity of new coatings.
Collapse
Affiliation(s)
- Emily Manderfeld
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, India
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Lejla Jusufagic
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| |
Collapse
|
7
|
Fahrina A, Arahman N, Aprilia S, Bilad MR, Silmina S, Sari WP, Sari IM, Gunawan P, Pasaoglu ME, Vatanpour V, Koyuncu I, Rajabzadeh S. Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane. Polymers (Basel) 2022; 14:polym14091908. [PMID: 35567077 PMCID: PMC9102394 DOI: 10.3390/polym14091908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Banda Aceh 23111, Indonesia
- Atsiri Research Center, PUI, Universitas Syiah Kuala, Jl. Syeh A Rauf, No. 5, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam;
| | - Silmina Silmina
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Widia Puspita Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Indah Maulana Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Poernomo Gunawan
- School of Chemical and Biomedical Engineering, Nanyang Technological, University Singapore, Singapore 627833, Singapore;
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
| | - Saeid Rajabzadeh
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan;
| |
Collapse
|