1
|
Shao S, Liu M, Tao B, Lasisi KH, Meng W, Wu X, Zhang K. Enhanced Protein Separation Performance of Cellulose Acetate Membranes Modified with Covalent Organic Frameworks. MEMBRANES 2025; 15:84. [PMID: 40137036 PMCID: PMC11944191 DOI: 10.3390/membranes15030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate (CA) to form a casting solution. The TpPa-1 COF/CA ultrafiltration membrane was then prepared using the non-solvent-induced phase inversion (NIPS) method. The influence of TpPa-1 COFs content on the hydrophilicity, stability and filtration performance of the modified membrane was studied. Due to the hydrophilic groups in TpPa-1 COFs and the network structure formed by covalent bonds, the modified CA membranes exhibited higher hydrophilicity and lower protein adsorption compared with the pristine CA membrane. The porous crystalline structure of TpPa-1 COFs increased the water permeation path in the CA membrane, improving the permeability of the modified membrane while maintaining an outstanding bovine serum albumin (BSA) rejection. Furthermore, the addition of TpPa-1 COFs reduced protein adsorption on the CA membrane and overcame the trade-off between permeability and selectivity in CA membrane bioseparation applications. This approach provides a sustainable method for enhancing membrane performance while enhancing the application of membranes in protein purification.
Collapse
Affiliation(s)
- Shurui Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (S.S.); (M.L.); (B.T.); (K.H.L.)
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Maoyu Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (S.S.); (M.L.); (B.T.); (K.H.L.)
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Baifu Tao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (S.S.); (M.L.); (B.T.); (K.H.L.)
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Kayode Hassan Lasisi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (S.S.); (M.L.); (B.T.); (K.H.L.)
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenqiao Meng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Xing Wu
- CSIRO Manufacturing, Clayton South, VIC 3169, Australia;
| | - Kaisong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (S.S.); (M.L.); (B.T.); (K.H.L.)
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Vatanpour V, Tuncay G, Teber OO, Paziresh S, Tavajohi N, Koyuncu İ. Introducing the SNW-1 Covalent Organic Framework to the Polyamide Layer of the TFC-RO Membrane with Enhanced Permeability and Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65194-65210. [PMID: 39539192 DOI: 10.1021/acsami.4c14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates the synthesis and characterization of Schiff base network-1 (SNW-1) covalent organic framework (COF) nanomaterials and their application in the fabrication of thin-film nanocomposite (TFN) membranes. The embedding of SNW-1 COF in reverse osmosis (RO) membranes with a polysulfone (PSf) substrate was done using the interfacial polymerization method. The result of the study demonstrated that the porous and hydrophilic structure of the COF increased the hydrophilic properties of the produced RO membranes. When the COF was embedded with a concentration of 0.02 wt %, the hydrophilicity of the RO membrane was higher than that of the other membranes, with a contact angle value of 45.2°. Pure water flux, saline solution flux, and humic acid (HA)/sodium chloride (NaCl) foulant solution flux were measured to determine the membrane performance, and it was found that as the COF ratio increased, the fluxes increased up to a certain concentration rate. The RO membrane with a SNW-1 concentration of 0.005 wt % had the highest values of pure water flux and saline solution flux with high salt rejection (34.2 and 32.2 LMH, 97.1%, respectively) and was the most resistant membrane against fouling. This study presents the potential of the SNW-1 COF with precise design capabilities and controlled unique properties as an additive for desalination applications.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gizem Tuncay
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
3
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
4
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
5
|
Cai Y, Yu Y, Wu J, Qu J, Hu J, Tian D, Li J. Recent advances of pure/independent covalent organic framework membrane materials: preparation, properties and separation applications. NANOSCALE 2024; 16:961-977. [PMID: 38108437 DOI: 10.1039/d3nr05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Covalent organic frameworks (COF) are porous crystalline polymers connected by covalent bonds. Due to their inherent high specific surface area, tunable pore size, and good stability, they have attracted extensive attention from researchers. In recent years, COF membrane materials developed rapidly, and a large amount of research work has been presented on the preparation methods, properties, and applications of COF membranes. This review focuses on the research on independent/pure continuous COF membranes. First, based on the membrane formation mechanism, COF membrane preparation methods are categorized into two main groups: bottom-up and top-down. Four methods are presented, namely, solvothermal, interfacial polymerization, steam-assisted conversion, and layer by layer. Then, the aperture, hydrophilicity/hydrophobicity and surface charge properties of COF membranes are summarized and outlined. According to the application directions of gas separation, water treatment, organic solvent nanofiltration, pervaporation and energy, the latest research results of COF membranes are presented. Finally, the challenges and future directions of COF membranes are summarized and an outlook provided. It is hoped that this work will inspire and motivate researchers in related fields.
Collapse
Affiliation(s)
- Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
6
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
7
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Rehman A, Jahan Z, Khan Niazi MB, Noor T, Javed F, Othman SI, Abukhadra MR, Nawaz A. Graphene-grafted bimetallic MOF membranes for hazardous & toxic contaminants treatment. CHEMOSPHERE 2023; 340:139721. [PMID: 37541443 DOI: 10.1016/j.chemosphere.2023.139721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Development of membrane with improved carbon dioxide (CO2) gas separation capability is a significant challenge. However, the fabrication of membrane that efficiently separate and purification CO2-containing gases has been the focus of global attention. Cellulose Acetate (CA) has robust reinforcing characteristics when incorporated within a suitable polymer matrix. This work focus on the synthesis of novel mixed matrix membranes (MMMs) by introducing Graphene-grafted bimetallic MOFs in Cellulose Acetate polymer. The graphene-grafted bimetallic MOF (GG-BM MOFs) was prepared by a hydrothermal technique. Whereas, the solution casting approach used to fabricate membranes. The 1-5 wt% of GG-BM MOFs incorporated into the CA matrix. The mechanical, hydrophilicity and adsorption characteristics of fabricated MMMs were investigated. The crystallinity of MMM enhanced after the addition of GG-BM MOFs. In addition, the mechanical characteristics of MMMs were improved with the incorporation of GG-BM MOFs inside the polymer matrix. Maximum stress and strain was obtained for 2 wt% MMM (36.4 N/mm2 and 11% respectively). The CO2 adsorption performance was evaluated at 10 bar and 45 °C. The FTIR results represent insignificant bond shifting with the addition GG-BM MOFs at these conditions. The overall results showed that MMMs containing 2 wt% GG-BM MOFs have good adsorption properties for CO2 i.e 3.15 wt% of CO2. The MMMs have shown a decrease in the mechanical properties and CO2 adsorption at the higher GG-BM MOFs loading due to the presence of agglomeration which was confirmed through SEM. Thus, the addition of GG-BM MOFs in the CA matrix positively altered the physicochemical characteristics of the resulting MMMs, which could assist them in achieving remarkable CO2 adsorption at 2 wt%.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Farhan Javed
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, 65211, Egypt
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
9
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
10
|
Metal ion-catalyzed Interfacial Polymerization of Functionalized Covalent Organic Framework films for efficient Separation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
Rehman A, Jahan Z, Sher F, Noor T, Khan Niazi MB, Akram MA, Sher EK. Cellulose acetate based sustainable nanostructured membranes for environmental remediation. CHEMOSPHERE 2022; 307:135736. [PMID: 35850224 DOI: 10.1016/j.chemosphere.2022.135736] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane-based gas separation has a great potential for reducing environmentally hazardous carbon dioxide (CO2) gas. The polymeric membranes developed for CO2 capturing have some limitations in their selectivity and permeability. There is a need to overcome these issues and developed such membranes having high-performance CO2 capture with cost-effectiveness. The present study aimed to synthesize mixed matrix membranes (MMMs) having improved properties CO2 adsorption performance and stability than that of pure polymer. Further, the effect on CO2 adsorption by increasing the filler concentration in MMMs was investigated. The MMMs were synthesized by incorporating (1-5 wt%) Cu-MOF-GO composites as filler into cellulose-acetate (CA) polymer matrix by adopting the solution casting method. The performance of MMMs was studied by changing the Cu-MOF-GO composite concentration (1-5 wt%) in the polymer matrix at 45 °C up to 15 bar. Morphological analysis by using SEM confirms that by increasing the concentration of Cu-MOF-GO more than 3% will result in their agglomeration in MMM. The successful incorporation of MOF within the polymer matrix of MMMs was confirmed through the presence of functional groups using FTIR and Raman spectroscopy. XRD analysis revealed that pure CA changes its semi-crystalline behaviour into crystalline by the addition of Cu-MOF-GO. The maximum tensile stress and strain rate of MMMs was 45.1 N/mm2 and 12.8%. In addition, with an increase in (4-5 wt%) Cu-MOF-GO concentration the hydrophilicity of MMMs decreases. The maximum uptake rate of CO2 was 1.79 mmol/g and 7.98 wt% at 15 bar. The adsorption results conclude that Cu-MOF-GO composite and CA-based MMM can be effective for CO2 capture.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Tayyaba Noor
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Aftab Akram
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
12
|
Wang S, Wei X, Li Z, Liu Y, Wang H, Zou L, Lu D, Hassan Akhtar F, Wang X, Wu C, Luo S. Recent advances in developing mixed matrix membranes based on covalent organic frameworks. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Arjmandi A, Peyravi M, Arjmandi M, Altaee A. Taking advantage of large water-unstable Zn4O(BDC)3 nanoparticles for fabricating the PMM-based TFC FO membrane with improved water flux in desalination process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Soyekwo F, Wen H, Dan L, Liu C. Crumpled Globule-Heterotextured Polyamide Membrane Interlayered with Protein-Polyphenol Nanoaggregates for Enhanced Forward Osmosis Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24806-24819. [PMID: 35594151 DOI: 10.1021/acsami.2c05075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface modulation of polyamide structures and the development of nanochanneled membranes with excellent water transport properties are crucial for the separation performance enhancement of thin-film composite membranes. Here, we demonstrate the fabrication of a modular nanochannel-integrated polyamide network on a nanoporous interlayer membrane comprising Mxene-reinforced protein-polyphenol nanoaggregates. The research indicates that the confined growth of the polyamide matrix inside this hydrophilic sub-10 nm nanochannel nanoporous intermediate layer stiffened the interfacial channels, leading to the formation of a polyamide layer with a spatial distribution of a network of unique 3D crumpled globule-like nanostructures. The high specific surface area of such a morphology bestowed the membrane with increased filtration area while facilitating the nanofluidic transport of water molecules through the nanochanneled membrane structure, leading to enhanced water flux of up to 26.6 L m-2 h-1 (active layer facing the feed solution) and 41.0 L m-2 h-1 (active layer facing the draw solution) using 1.0 M NaCl as the draw solution. The membrane equally exhibited good treatment for organic solvent forward osmosis filtration and typical seawater desalination. Moreover, the hierarchical nanostructures induced antimicrobial activity by effectively reducing the biofilm formation of Gram-negative Escherichia coli bacteria. This work provides significant insights into the interfacial engineering and compatibility of the nanomaterials and the polymers in interlayer mixed-matrix membranes, which are environmentally sustainable and cost-effective for the fabrication of advanced forward osmosis membranes for water purification and osmotic energy applications.
Collapse
Affiliation(s)
- Faizal Soyekwo
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Hui Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Liao Dan
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen 518055, People's Republic of China
| |
Collapse
|
15
|
Rasheed T, Khan S, Ahmad T, Ullah N. Covalent Organic Frameworks-Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. CHEM REC 2022; 22:e202200062. [PMID: 35641392 DOI: 10.1002/tcr.202200062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are a promising class of porous crystalline materials made up of covalently connected and periodically protracted network topologies through organic linkers. The tailorability of organic linker and intrinsic structures endow COFs with a tunable porosity and structure, low density, facilely-tailored functionality, and large surface area, attracting increasing amount of interests in variety of research areas of membrane separations. COF-based membranes have spawned a slew of new research projects, ranging from fabrication methodologies to separation applications. Herein, we tried to emphasis the major developments in the synthetic approaches of COFs based membranes for a variety of separation applications such as, separation of gaseous mixtures, water treatment as well as separation of isomeric and chiral organic compounds. The proposed methods for fabricating COF-based continuous membranes and columns for real world applications are also thoroughly explored. Finally, a viewpoint on the future directions and remaining challenges for COF research in the area of separation is provided.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
16
|
Zhao Y, Liang Y, Wu D, Tian H, Xia T, Wang W, Xie W, Hu XM, Tian X, Chen Q. Ruthenium Complex of sp 2 Carbon-Conjugated Covalent Organic Frameworks as an Efficient Electrocatalyst for Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107750. [PMID: 35224845 DOI: 10.1002/smll.202107750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
It is still a great challenge to explore hydrogen evolution reaction (HER) electrocatalysts with both lower overpotential and higher stability in acidic electrolytes. In this work, an efficient HER catalyst, Ru@COF-1, is prepared by complexation of triazine-cored sp2 carbon-conjugated covalent organic frameworks (COFs) with ruthenium ion. Ru@COF-1 possesses high crystallinity and porosity, which are beneficial for electrocatalysis. The large specific surface area and regular porous channels of Ru@COF-1 facilitate full contact between reactants and catalytic sites. The nitrogen atoms of triazines are protonated in the acidic media, which greatly improve the conductivity of Ru@COF-1. This synergistic effect makes the overpotential of Ru@COF-1 about 200 mV at 10 mA cm-2 , which is lower than other reported COFs-based electrocatalysts. Moreover, Ru@COF-1 exhibits exceptionally electrocatalytic durability in the acidic electrolytes. It is particularly stable and remains highly active after 1000 cyclic voltammetry cycles. Density functional theory calculations demonstrate that tetracoordinated Ru-N2 Cl2 moieties are the major contributors to the outstanding HER performance. This work provides a new idea for developing protonated HER electrocatalysts in acidic media.
Collapse
Affiliation(s)
- Yuxiang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Ying Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Hao Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Weiyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Xin-Ming Hu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| |
Collapse
|
17
|
Zheng W, Li A, Wang X, Li Z, Zhao B, Wang L, Kan W, Sun L, Qi X. Construction of hydrophilic covalent organic frameworks and their fast and efficient adsorption of cationic dyes from aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d2nj04336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TFPB-Pa-SO3H COF and TFPB-BDSA COF were synthesized and showed fast adsorption of MLB (1 and 2 min) and high adsorption uptakes of CV (1559 and 1288 mg g−1). TFPB-Pa-SO3H COF as adsorbing material was used for the removal of dye molecules in real water samples.
Collapse
Affiliation(s)
- Wang Zheng
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Anran Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Xiuwen Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Zhigang Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Li Sun
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Xin Qi
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
18
|
Li L, Li A, Zhao B, Kan W, Bi C, Zheng W, Wang X, Sun L, Wang L, Zhang H. Multi-sulfonated functionalized hydrophilic covalent organic framework for highly efficient dye removal from real samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj02857c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A hydrophilic covalent organic framework (BTA-BDSA-COF) was successfully erected by introducing multi-sulfonated groups into a covalent framework structure and it can be easily applied to capture the cationic dye in real water samples.
Collapse
Affiliation(s)
- Lantian Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Anran Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Chunyu Bi
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Wang Zheng
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Xiuwen Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Li Sun
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Hongrui Zhang
- Qiqihar Inspection and Testing Center, Qiqihar 161006, China
| |
Collapse
|