1
|
Jathan Y, Marchand EA. Enhanced coagulation for removal of dissolved organic nitrogen in water: A review. CHEMOSPHERE 2024; 366:143429. [PMID: 39349069 DOI: 10.1016/j.chemosphere.2024.143429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Wastewater treatment plants (WWTPs) meeting strict nutrient discharge regulations typically effectively remove inorganic nitrogen, leaving dissolved organic nitrogen (DON) as the main component of total nitrogen in the effluent. DON in treated effluent from both WWTPs and drinking water treatment plants (DWTPs) has the potential to induce eutrophication and contribute to the formation of nitrogenous disinfection byproducts (N-DBP). While numerous studies have investigated DON in different water sources, a limited number of studies have focused on its removal through enhanced coagulation. The variable removal efficiencies of dissolved organic carbon (DOC) and DON in treatment processes highlight the need for comprehensive research on enhanced coagulation for DON removal. Enhanced coagulation is a viable option for DON removal, but underlying mechanisms and influencing factors are still being actively researched. The effectiveness of enhanced coagulation depends on DON characteristics and coagulant properties, but knowledge gaps remain regarding their influence on treatment. DON is a complex mixture of compounds, with only a small fraction identified, such as proteins, degraded amino acids, urea, chelating agents, humic substances, and soluble microbial products. Understanding molecular-level characteristics of DON is crucial for identifying unknown compounds and understanding its fate and transformation during treatment processes. This review identifies knowledge gaps regarding enhanced coagulation process for DON removal, including the role of coagulant aids, novel coagulants, and pretreatment options. It discusses DON characteristics, removal mechanisms, and molecular-level transformation of DON during enhanced coagulation. Addressing these gaps can lead to process optimization, promote efficient DON removal, and facilitate safe water production.
Collapse
Affiliation(s)
- Yasha Jathan
- Department of Civil and Environmental Engineering University of Nevada, Reno, Reno, NV, 89557, USA
| | - Eric A Marchand
- Department of Civil and Environmental Engineering University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Gao Q, Duan L, Zhang H, Jia Y, Li M, Li S, Yang D. Effect of Mn 2+ on RO membrane organic fouling: Insights into the complexation and interfacial interaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122041. [PMID: 39083934 DOI: 10.1016/j.jenvman.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.
Collapse
Affiliation(s)
- Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongmin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Yin Z, Liu Y, Hu Z, Wang J, Li F, Yang W. Sustainable and ultrafast antibiotics removal, self-cleaning and disinfection with electroactive metal-organic frameworks/carbon nanotubes membrane. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134944. [PMID: 38889470 DOI: 10.1016/j.jhazmat.2024.134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Although conventional nanofiltration (NF) membrane is widely applied in water treatment, it faces the challenges of insufficient selectivity toward emerging contaminants, low permeability and non-sustainable fouling control. Herein, a novel electroactive metal-organic frameworks/carbon nanotubes membrane was constructed by facile and green nanobubbles-mediated non-solvent-induced phase separation (NIPS) strategy for ultrafast antibiotics removal. It presented 3-fold to 100-fold higher permeability (101.3-105.7 L·h-1·m-2·bar-1) without compromising rejection (71.8 %-99.3 %) of common antibiotics (tetracycline, norfloxacin, sulfamethoxazole, sulfamethazine) than most commercial and state-of-the-art NF membranes. The separation mechanism was due to the synergy of loose selective layer with three-dimensional interconnected networks and UiO-66/CNTs with unique pore sieving and charge property. It also presented excellent antibiotics selectivity with high NaCl/tetracycline separation factor of 194 and CuCl2/tetracycline separation factor of 316 for remediation of antibiotics and heavy metal combined pollution. Meanwhile, it possessed efficient anti-fouling, antibacterial and electro-driven self-cleaning ability, which enabled sustainable fouling control and disinfection with short process, low energy and chemical consumption. Furthermore, potential application of UiO-66/CNTs membrane in wastewater reclamation was demonstrated by stable antibiotics rejection, efficient flux recovery and long-term stability over 260 h. This study would provide useful insights into removal of emerging contaminants from water by advanced NF membrane.
Collapse
Affiliation(s)
- Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yulong Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zebin Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiancheng Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Chen Y, Nan J. Magnetic nanoparticle loading and application of weak magnetic field to reconstruct the cake layer of coagulation-ultrafiltration process to achieve efficient antifouling: Performance and mechanism analysis. WATER RESEARCH 2024; 254:121435. [PMID: 38461605 DOI: 10.1016/j.watres.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Abandoning the costly development of new membrane materials and instead directly remodeling the naturally occurring cake layer constitutes a dynamic, low-cost, long-lasting, and proactive strategy to "fight fouling with fouling". Several optimization strategies, including coagulation/modified magnetic seed loading and applying a weak magnetic force (0.01T) at the ultrafiltration end, improved the anti-fouling, retention, and sieving performances of conventional ultrafiltration process during the treatment of source water having complex natural organic matter (NOMs) and small molecule micropollutants. Two modified magnetic seeds we prepared were composite nano-seed particles (Fe3O4@SiO2-NH2 (FS) and Fe3O4@SiO2@PAMAM-NH2 (FSP)). Aim of the study was to regulate the formation of cake layer via comprehensive testing of the antifouling properties of optimized processes and related mechanistic studies. It was found to be essential to enhance the interception of xanthate and tryptophan proteins in the cake layer for improving the anti-fouling performance based on the correlation and redundancy analyses, while the use of modified magnetic seeds and magnetic field showed a significant positive impact on water production. Blockage modeling demonstrated the ability to form a mature cake layer during the initial filtration stage swiftly. This mitigated the risk of irreversible fouling caused by pore blockage during the early stage of coagulation-ultrafiltration. Morphologically, the reconstructed cake layer exhibited elevated surface porosity, an internal cavity channel structure, and enhanced roughness that can promote increased water flux and retention of water impurities. These optimized the maturity of the cake layer in both time and space. Density Functional Theory (DFT), Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and Modified Extended Derjaguin-Landau-Verwey-Overbeek (MDLVO) calculations indicated aggregation behavior of matter on the cake layer to be enhanced effectively due to magnetic seed loading. This is mainly due to the strengthening of polar interactions, including hydrogen bonding, π-π* conjugation, etc., which can happen between the cake layer loaded with FSP and the organic matter. Under the influence of a magnetic field, magnetic force energy (VMF) significantly impacts the system by eliminating energy barriers. This research will provide innovative strategies for effectively purifying intricate source water through ultrafiltration while controlling membrane fouling.
Collapse
Affiliation(s)
- Yunxuan Chen
- Skate Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- Skate Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
5
|
Bai Y, Wang RN, Wu YH, Xue S, Chen Z, Hu HY. Critical fractions in reclaimed water responsible for membrane fouling: Isolation, fouling characteristics, quantitative and qualitative variations in practical application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169822. [PMID: 38185154 DOI: 10.1016/j.scitotenv.2023.169822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 μm and > 0.45 μm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Rui-Ning Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
6
|
Lin D, Lai C, Wang X, Wang Z, Kuang K, Wang Z, Du X, Liu L. Enhanced membrane fouling by microplastics during nanofiltration of secondary effluent considering secretion, interaction and deposition of extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167110. [PMID: 37739085 DOI: 10.1016/j.scitotenv.2023.167110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Microplastic (MP) has been found to influence membrane fouling during microfiltration/ultrafiltration processes in direct and indirect ways by acting as fouling components and changing microbial activities, respectively. However, there is no relevant research about the contribution of MPs to nanofiltration membrane fouling. In this study, for the first time, the impacts of MPs on membrane fouling during the nanofiltration of secondary effluent (SE) were systematically investigated from the perspective of bacterial extracellular polymeric substances (EPS) secretion, their interaction with coexisting pollutants and also deposition. Membrane flux behaviors indicate that MPs simultaneously aggravated the short-term and long-term membrane fouling resistance of nanofiltration by 46 % and 27 %, respectively. ATR-FTIR, XPS and spectrophotometry spectra demonstrate that the deteriorated membrane fouling by MPs directly resulted from the increased accumulation of protein-like, polysaccharides-like and humic-like substances on membranes. EEM spectra further confirmed that MPs preferred to induce serious cake layers, which dominated membrane flux decline but hindered pore fouling. According to CLSM and SEM-EDS mappings, MPs in SE could stimulate microbial activities and then aggravate EPS secretion, after which their interaction with Ca2+ was also enhanced in bulk solution. The cross-linker nets could promote the deposition of other unlinked pollutants on membranes. Besides, MPs could weaken the rejection of certain dissolved organic matters (from 57 % to 52 % on the 50th day of filtration) by aggravating cake-enhanced concentration polarization (CECP), but improved the average removal of inorganic salts from 58 % to 63 % by improving their back diffusion through cake layers. Based on these analyses, the mechanisms of MP-enhanced membrane fouling during the nanofiltration of SE can be thoroughly revealed.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Caijing Lai
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaokai Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ke Kuang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Ziyuan Wang
- GuangZhou Sewage Purification Company, Guangzhou 510627, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lifan Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Gao Q, Duan L, Jia Y, Zhang H, Liu J, Yang W. Differences in the Effect of Mn 2+ on the Reverse Osmosis Membrane Fouling Caused by Different Types of Organic Matter: Experimental and Density Functional Theory Evidence. MEMBRANES 2023; 13:823. [PMID: 37887995 PMCID: PMC10608961 DOI: 10.3390/membranes13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Landfill leachate from some sites contains a high concentration of Mn2+, which may cause reverse osmosis (RO) membrane fouling during RO treatment. In this study, the effect of Mn2+ on RO membrane fouling caused by typical organic pollutants (humic acid (HA), protein (BSA), and sodium alginate (SA)) was systematically investigated, and it was found that Mn2+ exacerbates RO membrane fouling caused by HA, SA, and HBS (mixture of HA + BSA + SA). When the Mn2+ concentration was 0.5 mM and 0.05 mM separately, the membrane fouling caused by HA and SA began to become significant. On the other hand, with for HBS fouling only, the water flux decreased significantly by about 21.7% and further decreased with an increasing Mn2+ concentration. However, Mn2+ has no direct effect on BSA. The effect degrees to which Mn2+ affected RO membrane fouling can be expressed as follows: HBS > SA > HA > BSA. The density functional theory (DFT) calculations also gave the same results. In modeling the reaction of the complexation of Mn2+ with the carboxyl group in these four types of organic matter, BSA has the highest energy (-55.7 kJ/mol), which predicts that BSA binding to Mn2+ is the most unstable compared to other organic matter. The BSA carboxylate group also has the largest bond length (2.538-2.574 Å) with Mn2+ and the weakest interaction force, which provides a theoretical basis for controlling RO membrane fouling exacerbated by Mn2+.
Collapse
Affiliation(s)
- Qiusheng Gao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Q.G.); (H.Z.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hengliang Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Q.G.); (H.Z.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (Y.J.); (J.L.)
- Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Jin X, Li K, Wei Y, Shang Y, Xu L, Liu M, Xu L, Bai X, Shi X, Jin P, Song J, Wang XC. Polymer-flooding produced water treatment using an electro-hybrid ozonation-coagulation system with novel cathode membranes targeting alternating filtration and in situ self-cleaning. WATER RESEARCH 2023; 233:119749. [PMID: 36804336 DOI: 10.1016/j.watres.2023.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Polymer-flooding produced water is more difficult to treat for reinjection compared with normal produced water because of the presence of residual hydrolyzed polyacrylamide (HPAM). A novel cathode membrane integrated electro-hybrid ozonation-coagulation (CM-E-HOC) process was proposed for the treatment of polymer-flooding produced water. This process achieved in situ self-cleaning by generated microbubbles in the cathode membrane. The CM-E-HOC process achieved a higher suspended solid (SS), turbidity and PAM removal efficiency than the CM-EC process. The SS in the CM-E-HOC effluent was ≤ 20 mg/L SS, which met the reinjection requirements of Longdong, Changqing Oilfield, China (Q/SYCQ 08,011-2019) at different current densities (3, 5 and 10 mA/cm2). The CM-E-HOC process greatly mitigated both reversible and irreversible membrane fouling. Therefore, excellent flux recovery was obtained at different in situ self-cleaning intervals during the CM-E-HOC process. Furthermore, alternating filtration achieved continuous water production during the CM-E-HOC process. On one hand, the effective removal of aromatic protein-like substances and an increase in oxygen-containing functional groups were achieved due to the enhanced oxidation ability of the CM-E-HOC process, which decreased membrane fouling. On the other hand, the CM-E-HOC process showed improved coagulation performance because of the increased oxygen-containing functional groups and polymeric Fe species. Therefore, larger flocs with higher fractal dimensions were generated, and a looser and more porous cake layer was formed on the membrane surface during the CM-E-HOC process. Consequently, the CM-E-HOC process exhibited better in situ self-cleaning performance and lower filtration resistance than the CM-EC process.
Collapse
Affiliation(s)
- Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Yixiong Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yabo Shang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Lanzhou Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Mengwen Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Jina Song
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
9
|
Incorporating catalytic ceramic membrane into the integrated process of in situ ozonation, membrane filtration and biological degradation: Enhanced performance and underlying mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|