1
|
Kumar A, Naglah AM, Jain V, Ballal S, Sharma A, Abosaoda MK, Singh A, Krithiga T, Ray S, Doshi OP. A porous metal-organic framework (Pd-MOF) as an efficient and recyclable catalyst for the C-O cross-coupling reactions. Sci Rep 2025; 15:13070. [PMID: 40240426 PMCID: PMC12003842 DOI: 10.1038/s41598-025-97157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
This report outlines the development of a novel and efficient metal-organic framework (MOF) synthesized through a hydrothermal reaction using palladium acetate salt and trimesic acid as the organic ligand. A series of detailed analyses, including FT-IR, XRD, EDS, TEM, XPS, BET, ICP, and SEM, were performed to characterize the resulting MOF. These analyses confirmed the successful integration of Pd within the metal-organic framework structure. Nitrogen adsorption-desorption analysis assessed the porosity of the Pd-T-MOF metal-organic framework. The specific surface area was measured at 206.3 m2/g based on isotherms. Using the BJH method, the total pore volume was calculated as 0.4 cm3/g, with an average pore diameter of 2.8 nm. The catalyst demonstrated exceptional catalytic performance and stability in facilitating the C-O cross-coupling reaction. The proposed protocol offers several advantages, such as catalyst reusability, mild reaction conditions, high product yields ranging from 58 to 98%, and short reaction times between 30 and 120 min. Furthermore, the adaptable nanocatalyst (Pd-T-MOF) can be easily separated from the reaction mixture via centrifugation and reused across four successive cycles with only a slight decrease in efficiency.
Collapse
Affiliation(s)
- Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University, Mathura, 281406, India.
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Vicky Jain
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Amit Sharma
- Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering, A4, Paschim Vihar, New Delhi, 110063, India
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Ojas Prakashbhai Doshi
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
2
|
Su W, Xiang Y, Dai Y, Wang Y, Zhong S, Li J. Challenges and recent advances in MOF-based gas separation membranes. Chem Commun (Camb) 2024; 60:7124-7135. [PMID: 38913155 DOI: 10.1039/d4cc02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Membrane-based gas separation, characterized by a small footprint, low energy consumption and no pollution, has gained widespread attention as an environmentally friendly alternative to traditional gas separation. Metal-organic-frameworks (MOFs) are considered to be one of the most promising membrane-based gas separation materials because of their large specific surface area and high porosity. One of the hottest studies at the moment is how to utilize the characteristics of MOFs to prepare higher performance gas separation membranes. This paper provides a review of gas separation membranes used in recent years. Firstly, the synthesis methods of MOFs and MOF membranes are briefly introduced. Then, methods to improve the membrane properties of MOFs are described in detail, and include applications of lamellar MOFs, ionic liquid (IL) spin coating, functionalization of MOFs, defect engineering and mixed fillers. In addition, the challenges of MOF-based gas separation membranes are presented, including pore size, environmental disturbances, plasticization, interfacial compatibility, and so on. Finally, based on the current development status of the MOF membranes, the development prospects of MOF gas separation membranes are discussed. It is hoped to provide reliable and complete ideas for researchers to prepare high-performance gas separation membranes in the future.
Collapse
Affiliation(s)
- Wenjun Su
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yuanyuan Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Suyue Zhong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
3
|
Nie S, Liu E, Chen F, Ma Y, Chen K, Gao J. Enhancement of CO 2 adsorption and separation in basic ionic liquid/ZIF-8 with core-shell structure. Chem Commun (Camb) 2024; 60:3559-3562. [PMID: 38465413 DOI: 10.1039/d4cc00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A novel strategy was proposed to improve the performance of gas separation in nano-materials, by fabricating a core-shell structure out of the basic ionic liquid ([Emim]2[IDA]) and zeolitic imidazolate framework (ZIF-8). The [Emim]2[IDA]/ZIF-8 exhibits a remarkable CO2 adsorption capacity of 14 cm3 g-1 at 298 K and 20 kPa, the ideal selectivity of CO2/N2 is as high as 104 and CO2/CH4 is 348 at 298 K and 100 kPa, which are much higher than the CO2 adsorption capacity (4.3 cm3 g-1) and the selectivity (SCO2/N2 = 7.4, SCO2/CH4 = 2.7) of ZIF-8. This work could pave the way for designing advanced nanostructures tailored for gas separation.
Collapse
Affiliation(s)
- Shiyu Nie
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Encheng Liu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang, 323000, China
| | - Yilin Ma
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang, 323000, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Zhang S, He Y, Liu S, Zhang Z, Zhong C. Metal-Organic Framework Membrane Constructor: A Tool for High-Throughput Construction of Metal-Organic Framework Membrane Models. J Chem Inf Model 2023; 63:7476-7486. [PMID: 37997637 DOI: 10.1021/acs.jcim.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
With the rapid development of metal-organic framework (MOF) membranes for separation applications, computational screening of their separation performance has attracted increasing interest in the design and fabrication of such materials. Although bulk crystal models in MOF databases are often used to represent MOF membrane structures, membrane models in slab geometries are still essential for researchers to simulate the separation performance, particularly to understand the effects of the surface/interface structure, pore sieving, and exposed lattice plane on guest permeability. However, to date, no database or method has been established to provide researchers with numerous membrane models, restricting the further development of related theoretical studies. Herein, we propose an algorithm and develop a tool called the "MOF-membrane constructor" to realize the high-throughput construction of membrane models based on the MOF crystal structures. Using this tool, membrane models can be generated with desired sizes, reasonable surface terminations, and assigned exposed crystal planes. The tool can also deduce the most prominent surface in the Bravais-Friedel-Donnay-Harker morphology or identify the pores in MOF crystals and automatically determine an exposed plane for each membrane model. Thus, an MOF-membrane database can be established rapidly according to user simulation requirements. This study can considerably improve the efficiency of building MOF membrane models and may be beneficial for the future development of simulation studies on MOF membranes.
Collapse
Affiliation(s)
- Shitong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yanjing He
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shengtang Liu
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
6
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
7
|
McCalmont SH, Vaz ICM, Oorts H, Gong Z, Moura L, Costa Gomes M. Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. J Phys Chem B 2023; 127:3402-3415. [PMID: 36867065 DOI: 10.1021/acs.jpcb.2c08051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].
Collapse
Affiliation(s)
- Sam H McCalmont
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Inês C M Vaz
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Hanne Oorts
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Leila Moura
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
8
|
Dmitrieva E, Grushevenko E, Razlataya D, Golubev G, Rokhmanka T, Anokhina T, Bazhenov S. Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation. MEMBRANES 2022; 12:1090. [PMID: 36363645 PMCID: PMC9696779 DOI: 10.3390/membranes12111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Membranes based on natural polymers, in particular alginate, are of great interest for various separation tasks. In particular, the possibility of introducing silver ions during the crosslinking of sodium alginate makes it possible to obtain a membrane with an active olefin transporter. In this work, the creation of a hollow fiber composite membrane with a selective layer of silver alginate is proposed for the first time. The approach to obtaining silver alginate is presented in detail, and its sorption and transport properties are also studied. It is worth noting the increased selectivity of the material for the ethylene/ethane mixture (more than 100). A technique for obtaining a hollow fiber membrane from silver alginate has been developed, and its separating characteristics have been determined. It is shown that in thin layers, silver alginate retains high values of selectivity for the ethylene/ethane gas pair. The obtained gas transport properties demonstrate the high potential of using membranes based on silver alginate for the separation of an olefin/paraffin mixture.
Collapse
|
9
|
Dou H, Xu M, Yang L, Wang B, Yu A, Zhang L, Chen Z, Jiang Z. Efficient ethylene/ethane separation by zwitterionic deep eutectic solvent membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Xu M, Dou H, Peng F, Yang N, Xiao X, Tantai X, Sun Y, Jiang B, Zhang L. Ultra-stable copper decorated deep eutectic solvent based supported liquid membranes for olefin/paraffin separation: In-depth study of carrier stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Xu R, Xu X, Wang Y, Hou M, Li L, Pan Z, Song C, Wang T. MOF-derived nanocomposites functionalized carbon molecular sieve membrane for enhanced ethylene/ethane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Park S, Morales-Collazo O, Freeman B, Brennecke JF. Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angew Chem Int Ed Engl 2022; 61:e202202895. [PMID: 35384196 DOI: 10.1002/anie.202202895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 09/23/2023]
Abstract
Separation of olefins from their paraffin analogs relies on energy-intensive cryogenic distillation. Facilitated transport-based membranes that reversibly and selectively bind olefins, but not paraffins, could save considerable amounts of energy. However, the chemical instability of the silver ion olefin-binding carriers in such membranes has been a longstanding roadblock for this approach. We discovered long-term carrier stability against extended exposure to hydrogen, a common contaminant in such streams. Based on UV/Vis absorption and Raman spectroscopy, along with XRD analysis results, certain ionic liquids solubilize silver ions, and anion aggregates surrounding the silver ion carriers greatly attenuate their reduction by hydrogen. Here, we report the stability of olefin/paraffin separation properties under continuous exposure to high pressure hydrogen, which addresses a critical technical roadblock in membrane-based olefin/paraffin separation.
Collapse
Affiliation(s)
- Sejoon Park
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Oscar Morales-Collazo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Benny Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Li B, You X, Wu H, Li R, Xiao K, Ren Y, Wang H, Song S, Wang Y, Pu Y, Huang X, Jiang Z. A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Park S, Morales‐Collazo O, Freeman B, Brennecke JF. Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sejoon Park
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Oscar Morales‐Collazo
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Benny Freeman
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Joan F. Brennecke
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|