1
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
2
|
McCalmont SH, Vaz ICM, Oorts H, Gong Z, Moura L, Costa Gomes M. Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. J Phys Chem B 2023; 127:3402-3415. [PMID: 36867065 DOI: 10.1021/acs.jpcb.2c08051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].
Collapse
Affiliation(s)
- Sam H McCalmont
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Inês C M Vaz
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Hanne Oorts
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Leila Moura
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
3
|
Influence of Metal Salts Addition on Physical and Electrochemical Properties of Ethyl and Propylammonium Nitrate. Int J Mol Sci 2022; 23:ijms232416040. [PMID: 36555674 PMCID: PMC9781049 DOI: 10.3390/ijms232416040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, we deepen in the characterization of two protic ionic liquids (PILs), ethylammonium nitrate (EAN) and propylammonium nitrate (PAN). With this aim, we determined the influence of inorganic nitrate salts addition on their physical properties and their electrochemical potential window (EPW). Thus, experimental measurements of electrical conductivity, density, viscosity, refractive index and surface tension of mixtures of {EAN or PAN + LiNO3, Ca(NO3)2, Mg(NO3)2 or Al(NO3)3} at a temperature range between 5 and 95 °C are presented first, except for the last two properties which were measured at 25 °C. In the second part, the corresponding EPWs were determined at 25 °C by linear sweep voltammetry using three different electrochemical cells. Effect of the salt addition was associated mainly with the metal cation characteristics, so, generally, LiNO3 showed the lower influence, followed by Ca(NO3)2, Mg(NO3)2 or Al(NO3)3. The results obtained for the EAN + LiNO3 mixtures, along with those from a previous work, allowed us to develop novel predictive equations for most of the presented physical properties as functions of the lithium salt concentration, the temperature and the water content. Electrochemical results showed that a general order of EPW can be established for both PILs, although exceptions related to measurement conditions and the properties of the mixtures were found.
Collapse
|
4
|
Dou H, Xu M, Yang L, Wang B, Yu A, Zhang L, Chen Z, Jiang Z. Efficient ethylene/ethane separation by zwitterionic deep eutectic solvent membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Xu M, Dou H, Peng F, Yang N, Xiao X, Tantai X, Sun Y, Jiang B, Zhang L. Ultra-stable copper decorated deep eutectic solvent based supported liquid membranes for olefin/paraffin separation: In-depth study of carrier stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Jiang H, Bai L, Wang Z, Zheng W, Yang B, Zeng S, Zhang X, Zhang X. Mixed matrix membranes containing Cu-based metal organic framework and functionalized ionic liquid for efficient NH3 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Xu M, Dou H, Zhang Z, Zheng Y, Ren B, Ma Q, Wen G, Luo D, Yu A, Zhang L, Wang X, Chen Z. Hierarchically Nanostructured Solid-State Electrolyte for Flexible Rechargeable Zinc-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202117703. [PMID: 35233896 DOI: 10.1002/anie.202117703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/07/2022]
Abstract
The construction of safe and environmentally-benign solid-state electrolytes (SSEs) with intrinsic hydroxide ion-conduction for flexible zinc-air batteries is highly desirable yet extremely challenging. Herein, hierarchically nanostructured CCNF-PDIL SSEs with reinforced concrete architecture are constructed by nanoconfined polymerization of dual-cation ionic liquid (PDIL, concrete) within a robust three-dimensional porous cationic cellulose nanofiber matrix (CCNF, reinforcing steel), where plenty of penetrating ion-conductive channels are formed and undergo dynamic self-rearrangement under different hydrated levels. The CCNF-PDIL SSEs synchronously exhibit good flexibility, mechanical robustness, superhigh ion conductivity of 286.5 mS cm-1 , and decent water uptake. The resultant flexible solid-state zinc-air batteries deliver a high-power density of 135 mW cm-2 , a specific capacity of 775 mAh g-1 and an ultralong cycling stability with continuous operation of 240 hours for 720 cycles, far outperforming those of the state-of-the-art solid-state batteries. The marriage of biomaterials with the diversity of ionic liquids creates enormous opportunities to construct advanced SSEs for solid-state batteries.
Collapse
Affiliation(s)
- Mi Xu
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Bohua Ren
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
8
|
Dou H, Xu M, Zheng Y, Li Z, Wen G, Zhang Z, Yang L, Ma Q, Yu A, Luo D, Wang X, Chen Z. Bioinspired Tough Solid-State Electrolyte for Flexible Ultralong-Life Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110585. [PMID: 35316552 DOI: 10.1002/adma.202110585] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Manufacturing advanced solid-state electrolytes (SSEs) for flexible rechargeable batteries becomes increasingly important but remains grand challenge. The sophisticated structure of robust animal dermis and good water-retention of plant cell in nature grant germane inspirations for designing high-performance SSEs. Herein, tough bioinspired SSEs with intrinsic hydroxide ion (OH- ) conduction are constructed by in situ formation of OH- conductive ionomer network within a hollow-polymeric-microcapsule-decorated hydrogel polymer network. By virtue of the bioinspired design and dynamic dual-penetrating network structure, the bioinspired SSEs simultaneously obtain mechanical robustness with 1800% stretchability, good water uptake of 107 g g-1 and water retention, and superhigh ion conductivity of 215 mS cm-1 . The nanostructure of bioinspired SSE and related ion-conduction mechanism are revealed and visualized by molecular dynamics simulation, where plenty of compact and superfast ion-transport channels are constructed, contributing to superhigh ion conductivity. As a result, the flexible solid-state zinc-air batteries assembled with bioinspired SSEs witness high power density of 148 mW cm-2 , specific capacity of 758 mAh g-1 and ultralong cycling stability of 320 h as well as outstanding flexibility. The bioinspired methodology and deep insight of ion-conduction mechanism will shed light on the design of advanced SSEs for flexible energy conversion and storage systems.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mi Xu
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Yun Zheng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhaoqiang Li
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leixin Yang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
9
|
Xu M, Dou H, Zhang Z, Zheng Y, Ren B, Ma Q, Wen G, Luo D, Yu A, Zhang L, Wang X, Chen Z. Hierarchically Nanostructured Solid‐State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Xu
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Yun Zheng
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Bohua Ren
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Qianyi Ma
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Luhong Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| |
Collapse
|