1
|
Li J, Gao Y, Duan M, Peng Y, Zheng Y, Chai J, Liu Z. Influence of the PET-PTFE Separator Pore Structure on the Performance of Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34902-34912. [PMID: 38904546 DOI: 10.1021/acsami.4c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The separator is a crucial component in lithium batteries, as it physically separates the cathode and the anode while allowing ion transfer through the internal channel. The pore structure of the separator significantly influences the performance of lithium batteries, particularly lithium metal batteries. In this study, we investigate the use of a Janus separator composed of poly(ethylene terephthalate) (PET)-polytetrafluoroethylene (PTFE) fibers in lithium metal batteries. This paper presents a comprehensive analysis of the impact of this asymmetric material on the cycling performance of the battery alongside an investigation into the influence of two different substrates on lithium-ion deposition behavior. The research findings indicate that when the rigid PET side faces the lithium metal anode and the soft PTFE side faces the cathode, it significantly extends the cycling lifespan of lithium metal batteries, with an impressive 82.6% capacity retention over 2000 cycles. Furthermore, this study demonstrates the versatility of this separator type in lithium metal batteries by assembling the lithium metal electrode with high cathode-loading capacities (4 mA h/cm2). In conclusion, the results suggest that the design of asymmetric separators can serve as an effective engineering strategy with substantial potential for enhancing the lifespan of lithium metal batteries.
Collapse
Affiliation(s)
- Jiangpeng Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Yuanxin Gao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Mingyue Duan
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Yu Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Yun Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Jingchao Chai
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| | - Zhihong Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
| |
Collapse
|
2
|
Huang X, Cheng S, Huang C, Han J, Li M, Liu S, Zhang J, Zhang P, You Y, Chen W. Superspreading-Based Fabrication of Thermostable Nanoporous Polyimide Membranes for High Safety Separators of Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311219. [PMID: 38263800 DOI: 10.1002/smll.202311219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The development of thermally stable separators is a promising approach to address the safety issues of lithium-ion batteries (LIBs) owing to the serious shrinkage of commercial polyolefin separators at elevated temperatures. However, achieving controlled nanopores with a uniform size distribution in thermostable polymeric separators and high electrochemical performance is still a great challenge. In this study, nanoporous polyimide (PI) membranes with excellent thermal stability as high-safety separators is developed for LIBs using a superspreading strategy. The superspreading of polyamic acid solutions enables the generation of thin and uniform liquid layers, facilitating the formation of thin PI membranes with controllable and uniform nanopores with narrow size distribution ranging from 121 ± 5 nm to 86 ± 6 nm. Such nanoporous PI membranes display excellent structural stability at elevated temperatures up to 300 °C for at least 1 h. LIBs assembled with nanoporous PI membranes as separators show high specific capacity and Coulombic efficiency and can work normally after transient treatment at a high temperature (150 °C for 20 min) and high ambient temperature, indicating their promising application as high-safety separators for rechargeable batteries.
Collapse
Affiliation(s)
- Xinxu Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Sha Cheng
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jin Han
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Mengying Li
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaopeng Liu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jisong Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
| | - Ya You
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
| | - Wen Chen
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
| |
Collapse
|
3
|
Yu J, Bai L, Feng Z, Chen L, Xu S, Wang Y. Waste treats waste: Facile fabrication of porous adsorbents from recycled PET and sodium alginate for efficient dye removal. CHEMOSPHERE 2024; 355:141738. [PMID: 38513955 DOI: 10.1016/j.chemosphere.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Dye-contaminated water and waste plastic both pose enormous threats to human health and the ecological environment, and simultaneously solving these two issues in a sustainable and resource-saving way is highly important. In this work, a sodium alginate-polyethylene terephthalate-sodium alginate (SA@PET) composite adsorbent for efficient dye removal is fabricated using wasted PET bottle and marine plant-based SA via simple and energy-efficient nonsolvent-induced phase separation (NIPS) method. Benefiting from its porous structure and the abundant binding sites, SA@PET shows an excellent methylene blue (MB) adsorption capacity of 1081 mg g-1. The Redlich-Peterson model more accurately describes the adsorption behavior, suggesting multiple adsorption mechanisms. In addition to the electrostatic attractions of SA to MB, polar interactions between the PET matrix and MB are also identified as adsorption mechanisms. It is worth mentioning that SA@PET could be recycled 7 times without a serious decrease in performance, and the trifluoroacetic acid-dichloromethane solvent involved in the NIPS process has the possibility of reuse and stepwise recovery. Finally, the discarded adsorbent could be completely degraded under mild conditions. This work provides not only a composite adsorbent with excellent cationic dye removal performance for wastewater treatment, but also an upcycling strategy for waste PET.
Collapse
Affiliation(s)
- Jing Yu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lan Bai
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zijun Feng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuzhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Wang Y, Guo M, Fu H, Wu Z, Zhang Y, Chao G, Chen S, Zhang L, Liu T. Thermotolerant separator of cross-linked polyimide fibers with narrowed pore size for lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Polyimide-Based Materials for Lithium-Ion Battery Separator Applications: A Bibliometric Study. INT J POLYM SCI 2022. [DOI: 10.1155/2022/6740710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyimide (PI) has excellent thermal stability, high porosity, and better high-temperature resistance. It has the potential to become a more high-end separator material, which has attracted the attention of the majority of researchers. This review is aimed at identifying the research progress and development trends of the PI-based material for separator application. We searched the published papers (2012–2021) from the WOS core collection database for analysis and analyzed their research progress and development trend based on CiteSpace text mining and visualization software. The analysis shows that the PI-based composite separator material is a research hotspot in the future and the combination of nanofiber and cellulose materials with PI is also an important research direction in the future.
Collapse
|