1
|
Chen C, Shen L, Wang B, Lu X, Raza S, Xu J, Li B, Lin H, Chen B. Environmental applications of metal-organic framework-based three-dimensional macrostructures: a review. Chem Soc Rev 2025; 54:2208-2245. [PMID: 39791318 DOI: 10.1039/d4cs00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility. Consequently, they exhibit rapid mass transfer and exceptional practicality, offering extensive potential applications in environmental remediation. This review presents a comprehensive overview of recent advancements in utilizing MOF-based 3DMs for environmental remediation, encompassing their fascinating characteristics, preparation strategies, and characterization methods, and highlighting their exceptional performance in pollutant adsorption, catalysis, and detection. Furthermore, existing challenges and prospects are presented to advance the utilization of MOF-based materials across various domains, particularly in environmental remediation.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinchun Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Chen X, Gong X. Electrochemically fast preparation of superhydrophobic copper mesh for high-efficiency oil spill adsorption and oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134465. [PMID: 38704904 DOI: 10.1016/j.jhazmat.2024.134465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Oily wastewater and marine oil spills are a massive environmental and human threat. Conventional oil spill treatment methods include adsorption by absorbent materials, dispersants or adsorbents, and in situ burning. Superhydrophobic materials, as a material that can achieve oil-water separation, have great potential for application in oil spill treatment. Research on superhydrophobic oil spill treatment mainly focuses on materials such as sponges and fabrics. Although these materials can effectively perform oil-water separation or oil spill adsorption, they also have the disadvantages of complicated preparation methods and high costs. Here, we present a miniature device for oil-water separation and oil spill collection and recovery. The superhydrophobic copper mesh box can be used on its own as an oil-water separation device or in combination with a commercial polyurethane sponge as a miniature oil-absorbing device. The robust copper mesh is prepared in two steps: anodizing and impregnation. The superhydrophobic copper mesh had a high oil separation flux (32,330 L m-2 h-1) and efficiency (97%), which remained high (28,560 L m-2 h-1) and efficient (95%) after 20 cycles of separation. The combined micro oil adsorption device can adsorb different oils and fats on the water surface, and it has good reusability with oil adsorption capacity and efficiency up to 15.28 g/g and 98% and still has good oil adsorption capacity (11.54 g/g) and efficiency (94.6%) after 20 cycles of adsorption. Therefore, the prepared micro oil-absorbing device has promising application prospects in oil-water separation, oil spill cleanup, etc. ENVIRONMENTAL IMPLICATION: This study demonstrates a facile electrochemical approach to prepare a miniature device for high-efficiency oil-water separation and oil spill collection and recovery. The modified copper mesh's separation flux could reach 32,330 L m-2 h-1, showing great promise in oil-water separation and oil spill cleanup.
Collapse
Affiliation(s)
- Xuefeng Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Wang Y, Zhang G, Yang D, Li Y, Yin W, Xu J. Composition Design of Ni-Nano-Cu-BTC@Ag Coatings with Low Friction and Their Intelligent Electrical Control Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4306-4313. [PMID: 38365200 DOI: 10.1021/acs.langmuir.3c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
At present, Ni-based coatings are rarely used in the field of voltage control friction because of their poor antifriction, wear resistance, and conductive properties. Therefore, in this paper, Cu-BTC@Ag nanocrystals were used to enhance the nickel coatings, and the effect of voltage on their tribological properties was also investigated. It was found that the grains of coating were refined via the addition of Cu-BTC@Ag nanocrystals, leading to an improvement in the hardness and corrosion resistance of this composite coating. The tribological performance of nickel composite coating could be controlled under different electrical fields. With the comparison of the pure Ni-based coating, the average friction coefficient and wear volume of its composite coating with 5 wt % Cu-BTC@Ag were reduced by 7.0 and 91.8%, respectively, which showed excellent wear resistance without an applied voltage. Under the condition of 20 V, the 5 wt % Cu-BTC@Ag/Ni-based composite coating owned outstanding antifriction performance. Therefore, Cu-BTC@Ag played an intelligent role in regulating the friction of Ni-based coatings under an external voltage. It is due to the accumulation of Cu-BTC@Ag nanocrystals on the surface of the coating under the action of voltage, which played the role of supporting load and effectively reducing wear.
Collapse
Affiliation(s)
- Yuyun Wang
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Guoliang Zhang
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Duo Yang
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Yang Li
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Wei Yin
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Jingshui Xu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| |
Collapse
|
4
|
Peng L, Shu Y, Jiang L, Liu W, Zhao G, Zhang R. A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH 2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes. Molecules 2023; 28:7667. [PMID: 38005388 PMCID: PMC10675660 DOI: 10.3390/molecules28227667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Photocatalytic membranes are typical multifunctional membranes that have emerged in recent years. The lack of active functional groups on the surface of membranes made of inert materials such as polyvinylidene fluoride(PVDF) makes it difficult to have a stable binding interaction with photocatalysts directly. Therefore, in this study, we developed a simple method to prepare NH2-UiO-66/BiOBr/PVDF(MUB) membranes for efficient dye treatment by grafting benzophenolic acid-functionalized NH2-UiO-66 onto the surface of membranes with photocatalytic properties under visible light irradiation using benzophenolic acid with photoinitiating ability as an anchor. The structural characteristics, photocatalytic properties, antifouling properties, and reusability of the composite membranes were investigated in subsequent experiments using a series of experiments and characterizations. The results showed that the benzophenone acid grafting method was stable and the nanoparticles were not easily dislodged. The MUB composite membrane achieved a higher dye degradation efficiency (99.2%) than the pristine PVDF membrane at 62.9% within a reaction time of 180 min. In addition, the composite membranes exhibited higher permeate fluxes for both pure and mixed dyes and also demonstrated outstanding water flux recovery (>96%) after the light self-cleaning cycle operation. This combination proved to improve the performance of the membranes instead of reducing them, increasing their durability and reusability, and helping to broaden the application areas of membrane filtration technology.
Collapse
Affiliation(s)
- Lin Peng
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Luming Jiang
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Weidong Liu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Guixiang Zhao
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
- Key Laboratory of Oilfield Chemicals, China National Petroleum Corporation (CNPC), Beijing 100083, China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
5
|
Wang J, Wang H, Shen L, Li R, Lin H. A sustainable solution for organic pollutant degradation: Novel polyethersulfone/carbon cloth/FeOCl composite membranes with electric field-assisted persulfate activation. WATER RESEARCH 2023; 244:120530. [PMID: 37657317 DOI: 10.1016/j.watres.2023.120530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOP) and ultrafiltration (UF) membranes have demonstrated effectiveness in treating wastewater. This investigation illuminated a pioneering two-stage procedure for fabricating polyethersulfone/carbon cloth/FeOCl (PES/CC/FeOCl) composite catalytic membranes, exhibiting proficiency in persulfate activation. Evidenced by their distinctively high degradation rates and superior stability, these innovative composite membranes efficaciously obviate tetracycline (TC), showcasing a striking TC degradation rate, with an unparalleled removal ratio peaking at 93% under applied electrical fields. The process underlying persulfate activation and TC degradation was meticulously explored through electron paramagnetic resonance (EPR) and quenching trials. These evaluations unveil that hydroxyl radicals (•OH) and sulfate radicals (SO4•-) primarily drive the eradication of diminutive organic molecules. Subsequent studies emphasized the noteworthy rejection ratio of the PES/CC/FeOCl composite membranes (90%) for sodium alginate (SA), further revealing their exceptional on-line cleansing efficiency in an electrofiltration-associated in-situ oxidation system. In essence, this study proposed a novel approach for the synthesis of composite membranes adept at the catalytic degradation of organic pollutants. This paradigm-shifting research imparted a unique lens to perceive the integration of membrane separation technology, enriching the domain of advanced wastewater treatment strategies.
Collapse
Affiliation(s)
- Jing Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
6
|
Shen L, Wu Q, Ye Q, Lin H, Zhang J, Chen C, Yue R, Teng J, Hong H, Liao BQ. Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics. WATER RESEARCH 2023; 243:120353. [PMID: 37482001 DOI: 10.1016/j.watres.2023.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The optimization of membrane bioreactors (MBRs) involves a critical challenge in structural design for mitigation of membrane fouling. To address this issue, a three-dimensional computational fluid dynamics (CFD) model was utilized in this study to simulate the hydrodynamic characteristics of a flat sheet (FS) MBR. The optimization of the membrane module configuration and operating conditions was performed by investigating key parameters that altered the shear stress and liquid velocity. The mixed liquor suspended solids (MLSS) concentration was found to increase the shear stress, leading to a more uniform distribution of shear stress. By optimizing the appropriate bubble diameter to 5 mm, the shear stress on the membrane surface was optimized with relatively uniform distribution. Additionally, extending the side baffle length dramatically improved the uniformity of the shear stress distribution on each membrane. A novel in-situ aeration method was also discovered to promote turbulent kinetic energy by 200 times compared with traditional aeration modes, leading to a more uniform bubble streamline. As a result, the novel in-situ aeration method demonstrated superior membrane antifouling potential in the MBR. This work provides a new approach for the structural design and optimization of MBRs. The innovative combination of the CFD model, optimization techniques, and novel in-situ aeration method has provided a substantial contribution to the advancement of membrane separation technology in wastewater treatment.
Collapse
Affiliation(s)
- Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qihang Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qunfeng Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Rong Yue
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
7
|
Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207313. [PMID: 36709424 DOI: 10.1002/smll.202207313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.
Collapse
Affiliation(s)
- Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
8
|
Zheng W, Xu J, Wang L, Zhang J, Chu W, Liu J, Lu L, Cai C, Peng K, Huang X. Electro-enhanced Rapid Separation of Nanosized Oil Droplets from Emulsions via the Superhydrophilic Micro-sized Pore Membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Chen B, Wang J, Li R, Lin H, Li B, Shen L, Xu Y, Zhang M. Fabrication of CoFe2O4/Mn3O4 decorated ultrathin graphitic carbon nitride nanosheets membrane for persistent organic pollutants removal: synergistic performance and mechanisms. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Tang W, Meng Y, Yang B, He D, Li Y, Li B, Shi Z, Zhao C. Preparation of hollow-fiber nanofiltration membranes of high performance for effective removal of PFOA and high resistance to BSA fouling. J Environ Sci (China) 2022; 122:14-24. [PMID: 35717080 DOI: 10.1016/j.jes.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) process has become one of the most promising technologies to remove micro-organic combined water pollution. Developing a NF membrane material with efficient separation for perfluorooctanoic acid (PFOA) combined pollution is highly desired, this manuscript targets this unmet need specifically. In this work, hydrophilic SiO2 nanoparticles with various contents blended with carboxylic multiwalled carbon nanotube were used to modify poly (m-phenylene isophthal amide) (SiO2/CMWCNT/PMIA) hollow fiber NF membrane. The modified membrane with 0.1 wt% SiO2 doping exhibits way better fouling resistance with irreversible fouling ratio decreased dramatically from 18.7% to 2.3%, and the recovery rate of water flux increases significantly from 81.2% to 97.7%. The separation experiment results had confirmed that the modified membrane could improve the rejection from 97.2% to 98.6% for perfluorooctanoic acid (PFOA) and its combined pollution with bovine serum albumin (BSA). It is clear that this reported SiO2/CMWCNT/PMIA hollow fiber NF membrane potentially could be applied in water treatment. This research also provides a theoretical basis for efficiently removal of PFOA and its combined pollution by NF membrane.
Collapse
Affiliation(s)
- Wenjing Tang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yunyi Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Yang
- The Fourth Construction CO. LTD of China Electronics System Engineering, Tianjin 300130, China
| | - Dongyu He
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bojun Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zheming Shi
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Changwei Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Huang Z, Shen L, Lin H, Li B, Chen C, Xu Y, Li R, Zhang M, Zhao D. Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Ma Y, Hu Z, Lu N, Niu Y, Deng X, Li J, Zhu Z, Sun H, Liang W, Li A. Highly efficient solar photothermal conversion of graphene-coated conjugated microporous polymers hollow spheres. J Colloid Interface Sci 2022; 623:856-869. [DOI: 10.1016/j.jcis.2022.05.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
13
|
Maouche C, Wang Y, Cheng C, Wang W, Li Y, Qureshi WA, Huang P, Amjad A, Zhou Y, Yang J. Sulfur doped Fe N C catalysts derived from Dual-Ligand zeolitic imidazolate framework for the oxygen reduction reaction. J Colloid Interface Sci 2022; 623:146-154. [DOI: 10.1016/j.jcis.2022.04.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/25/2023]
|
14
|
Al-Hazmi HE, Shokrani H, Shokrani A, Jabbour K, Abida O, Mousavi Khadem SS, Habibzadeh S, Sonawane SH, Saeb MR, Bonilla-Petriciolet A, Badawi M. Recent advances in aqueous virus removal technologies. CHEMOSPHERE 2022; 305:135441. [PMID: 35764113 PMCID: PMC9233172 DOI: 10.1016/j.chemosphere.2022.135441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak has triggered a massive research, but still urgent detection and treatment of this virus seems a public concern. The spread of viruses in aqueous environments underlined efficient virus treatment processes as a hot challenge. This review critically and comprehensively enables identifying and classifying advanced biochemical, membrane-based and disinfection processes for effective treatment of virus-contaminated water and wastewater. Understanding the functions of individual and combined/multi-stage processes in terms of manufacturing and economical parameters makes this contribution a different story from available review papers. Moreover, this review discusses challenges of combining biochemical, membrane and disinfection processes for synergistic treatment of viruses in order to reduce the dissemination of waterborne diseases. Certainly, the combination technologies are proactive in minimizing and restraining the outbreaks of the virus. It emphasizes the importance of health authorities to confront the outbreaks of unknown viruses in the future.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Karam Jabbour
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | | | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Michael Badawi
- Université de Lorraine, Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS, 7019, Nancy, France.
| |
Collapse
|
15
|
Industrial symbiosis: Boron waste valorization through CO2 utilization. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Ren S, Huang S, Liu B. Enhanced removal of ammonia nitrogen from rare earth wastewater by NaCl modified vermiculite: Performance and mechanism. CHEMOSPHERE 2022; 302:134742. [PMID: 35525451 DOI: 10.1016/j.chemosphere.2022.134742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Wastewater from rare earth mining (WREM) is very harmful to environment and human health due to its high concentration of ammonia nitrogen (NH3-N). It is therefore necessary and urgent to find a low-cost and convenient technique to remove high concentration of NH3-N from WREM. In this study, Natural powdered vermiculite (NV) was modified with seven sodium chloride (NaCl) solutions, and seven kinds of sodium chloride modified vermiculite (Na-V) were obtained. The NH3-N adsorption performance of Na-V is greatly improved compared with NV. Among them, vermiculite modified with 180 g/L NaCl yielded the highest ammonium adsorption capacity (Qm, 11.569 mg/g), which was 63.43% higher than NZ (Qm, 7.079 mg/g). The characterizations of 180-Na-V confirmed the removal mechanism of NH3-N that the improved capacity of modified vermiculite was attributed to its higher mesoporous volume and ion-exchange capacity, which are the result of sodium-ion exchange and Interlayer effect from high concentration of NaCl. The adsorption isotherms and kinetics were respectively best consistent with Langmuir model and the pseudo-second-order (PSO) model. The adsorption capacity (3.808 mg/g) of vermiculite after 5 cycles could still maintain 75.09% of the initial adsorption capacity (5.071 mg/g). A large amount of Na-V had little effect on pH of water, which meet the requirements of practical application. Including pH, dosage, coexisting ions, the effects of other factors on ammonium adsorption were also determined. This study provides a new method for vermiculite to remove high concentration of NH3-N.
Collapse
Affiliation(s)
- Shigang Ren
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.
| | - Shaoyong Huang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Baixiong Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.
| |
Collapse
|
17
|
Mohammadzadeh Pakdel P, Peighambardoust SJ, Arsalani N, Aghdasinia H. Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid-co-itaconic acid) nanocomposite hydrogel. ENVIRONMENTAL RESEARCH 2022; 212:113201. [PMID: 35413301 DOI: 10.1016/j.envres.2022.113201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Copolymer of acrylic acid (AA) and itaconic acid (IA) grafted onto sodium carboxymethyl cellulose hydrogel (CMC-g-poly (AA-co-IA)) was successfully synthesized as an adsorbent to remove safranin-O from wastewater. The swelling and removal efficiencies of CMC-g-poly (AA-co-IA) were enhanced by increasing IA/AA molar ratio as well as by incorporation of montmorillonite clay nano-sheets (MMT). The surface area of MMT, CMC-g-poly (AA-co-IA), and CMC-g-poly (AA-co-IA) samples was 15.632, 0.61452, and 0.66584 m2/g, respectively, indicating the effectiveness of MMT nano-sheets in improving hydrogel surface area. The maximum removal efficiency of CMC-g-poly (AA-co-IA)/MMT under optimum conditions i.e., pH of 8, initial concentration of 10 mg/L, adsorbent dose of 2 g/L, and contact time of 40 min was ascertained 99.78% using a response surface methodology-central composite design (RSM-CCD). Pseudo-second-order and Langmuir models giving the maximum monolayer adsorption capacity of 18.5185 mg/g and 19.1205 mg/g for CMC-g-poly (AA-co-IA) and CMC-g-poly (AA-co-IA)/MMT samples, respectively are the best-fitted models for kinetic and equilibrium data. Thermodynamically, safranin-O decontamination was spontaneous, exothermic, and entropy decreasing. Moreover, ad (de)sorption behavior study showed that CMC-g-poly (AA-co-IA)/MMT performance was not changed after multiple recovery steps. Therefore, CMC-g-poly (AA-co-IA)/MMT was considered as a highly potential adsorbent for safranin-O removal from wastewater.
Collapse
Affiliation(s)
| | | | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Aghdasinia
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
18
|
Yuan L, Gan Z, Fan Y, Ding F, Xu X, Chen X, Zou X, Zhang W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH 2/MnO 2 fluorescence probe for total organophosphorus pesticide determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129111. [PMID: 35643005 DOI: 10.1016/j.jhazmat.2022.129111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
An enzyme-regulated UiO-66-NH2/MnO2 fluorescence sensor, fully functionalized with spectrometric capacities, is developed for budget-friendly total organophosphorus pesticides (OPs) determination. The fluorescence probe, UiO-66-NH2/MnO2, is hydrothermally synthesized and morphologically examined. A specialized enzyme-catalyzed reaction, which can be gradually inhibited by OPs, is designed with participations of alkaline phosphatase (ALP) and sodium L-ascorbyl-2-phosphate (AAP). The reaction product of ascorbic acid (AA) decomposes MnO2 and restores UiO-66-NH2 fluorescence, establishing a relationship between OPs level and fluorescence intensity. Interactions among UiO-66-NH2, MnO2, OPs, and AA are clarified. Stepwise optimizations are performed to the UiO-66-NH2/MnO2 probe, ensuring considerable advantages as OPs affinity and fluorescence quenching behavior over rival nanomaterials. Analytical advances are magnified by fabricating an active sensor module, with self-acting thermal regulation for optimal enzyme activity. Under 4 and 20 °C environment, regulation period is less than 40 and 100 s. In total OPs determination for laboratorial and real-vegetable samples, this method exhibits uniform and log-linear responses to common species of OPs in a range as 1.0 × 10-7~10 mg L-1, and limit of detection is established as 8.9 × 10-8 mg L-1. Proposed readouts are validated with certified HPLC and recovery test. Relative errors and recovery rates are found as 2.7-6.4% and 95.8-102.6%, respectively.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Gan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuyuan Ding
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Mehmood CT, Tan W, Chen Y, Waheed H, Li Y, Xiao Y, Zhong Z. UV/O3 assisted ceramic membrane reactor for efficient fouling control and DOM transformations in real textile wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Liu M, Shen L, Wang J, Ding Y, Zhou Y, Liu F. Continuous separation and recovery of high viscosity oil from oil-in-water emulsion through nondispersive solvent extraction using hydrophobic nanofibrous poly(vinylidene fluoride) membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Li J, Zhang S, Fan Y, Wang A, Miao Z, Cheng P, Liu H. Effect of phenyltrimethoxysilane coupling agent (A153) on simultaneously improving mechanical, electrical, and processing properties of ultra-high-filled polypropylene composites. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The improvement of mechanical properties, electrical properties, and processing properties of ultra-high-filled thermal insulation polypropylene (PP) composites has been plagued by high filling amount of heat-conducting fillers such as alumina powder (Al2O3) and expanded graphite. In order to improve its properties, this article uses a high-temperature-resistant coupling agent (A153) to modify the PP composite. The results of this study show that when the content of A153 reaches 7.5 phr, the tensile strength of PP composite can reach 5 MPa, the elongation at break can reach 25%, and the volume resistivity can reach 12.8 × 1012 Ω·m, and the maximum thermal conductivity is 1.82 W·m−1·K−1. The processability also shows that the introduction of A153 can increase the melt flow rate and effectively improve the processability of the material.
Collapse
Affiliation(s)
- Jianxi Li
- CGN Advanced Materials Technology (Suzhou) Co., Ltd. , Taicang 215400 , China
| | - Shuya Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University , Suzhou 215123 , China
| | - Yaqin Fan
- CGN Advanced Materials Technology (Suzhou) Co., Ltd. , Taicang 215400 , China
| | - Aosong Wang
- China Nuclear Power Engineering Co., Ltd. , Shenzhen 518000 , China
| | - Zhuang Miao
- CGN Advanced Materials Technology (Suzhou) Co., Ltd. , Taicang 215400 , China
| | - Peng Cheng
- CGN Advanced Materials Technology (Suzhou) Co., Ltd. , Taicang 215400 , China
| | - Hanzhou Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University , Suzhou 215123 , China
| |
Collapse
|
22
|
Surface-functionalized PVDF membranes by facile synthetic Cu-MOF-74 for enhanced contaminant degradation and antifouling performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ma H, Zha C, Sun D, Qian Z, Shi J, Chen Z, Huang J, Gui C. A facile method combined with electroless nickel plating and carbonization to fabricate textured Ni-coated carbon tube for flexible strain sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Berned-Samatán V, Rubio C, Galán-González A, Muñoz E, Benito AM, Maser WK, Coronas J, Téllez C. Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Achieving job-synergistic polysulfides adsorption-conversion within hollow structured MoS2/Co4S3/C heterojunction host for long-life lithium–sulfur batteries. J Colloid Interface Sci 2022; 626:535-543. [DOI: 10.1016/j.jcis.2022.06.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
26
|
Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction. J Colloid Interface Sci 2022; 616:34-43. [DOI: 10.1016/j.jcis.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
27
|
Graphene Oxide-Chitosan Network on a Dialysis Cellulose Membrane for Efficient Removal of Organic Dyes. ACS APPLIED BIO MATERIALS 2022; 5:2795-2811. [PMID: 35621372 DOI: 10.1021/acsabm.2c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, water pollution is a significant health problem for both humans and animals due to large amounts of dye-containing wastewater. Thus, polymer composite membranes (PCMs) are considered as efficient adsorption/filtration membranes that can be utilized for removing organic dyes from contaminated water/wastewater. In this study, the goal is to explore the modification of the interfacial dialysis cellulose (DC) surface through molecular interactions of an active graphene oxide-chitosan (GO-CTS) composite hydrogel (GCCH) network without the use of an external cross-linker toward an effective dye removal ability using a simple casting process and a low-cost adsorption technique, resulting in the formation of a PCM, i.e., GO/CTS/DC membrane (GCD-mems). Concomitantly, the incorporation of the GCCH network (as an active hybrid network) and DC (as a supporting material) is considered as a promising approach toward a dye-removing PCM. As a result, the GCD-mems showed that cellulose robustly interacted via the chemical bonds of the GCCH network by maintaining the three-dimensional (3D) porous layer structures, and the functional surface of the membrane was enhanced toward specific groups for an effective dye removal approach. In addition, there is a significant improvement in dye removal performance after modification of the interfacial DC surface through molecular interactions of GCCH, i.e., high adsorption capacities of cationic and anionic dye molecules on the GCD-mems, compared to the relevant GO-based adsorbents. Also, the dye flux and rejection of the GCD-mems can simultaneously remove both methylene blue and Congo red. In the adsorption, it is appropriate with the pseudo-second-order and Langmuir models corresponding to chemical adsorption and monolayer approaches, as well as physical sieving through the 3D layers of porous channels of GCD-mems during the filtration process. Moreover, the structural stability and sustainability of the PCMs are enhanced during the recycling process, and the use of ethanol in the recycling process further simplifies the process and reduces the cost of the PCMs. Thus, the GCD-mems are encouraged as potential candidates that can be applied directly in the removal of dyes from the wastewater of textile industries or selective dialysis applications.
Collapse
|
28
|
Pan Z, Zeng B, Lin H, Teng J, Zhang H, Hong H, Zhang M. Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153252. [PMID: 35066039 DOI: 10.1016/j.scitotenv.2022.153252] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
While transparent exopolymer particles (TEP) has high fouling potential, its underlying fouling mechanisms have not yet been well revealed. In current work, fouling characteristics of TEP under different Ca2+ concentrations (0 to 1.5 mM) were investigated. TEP quantification and filtration tests showed that TEP contents increased with Ca2+ concentration, while TEP's specific filtration resistance (SFR) under the influence of Ca2+ concentration presented a unimodal pattern. The peak of TEP's SFR reached at Ca2+ concentration of 1 mM when SA concentration was 0.3 g·L-1. A series of characterizations suggested that microstructure transformation of TEP particles was the main contributor to the resistance variations of TEP solution. The optical microscope observation showed that above and below the critical Ca2+ concentration (1 mM when SA concentration is 0.3 g·L-1 in this study), the formed TEP existed in the form of c-TEP (average particle size is 0.24 μm) and p-TEP (average particle size is 1.05 μm), respectively. Thermodynamic analysis showed that the adhesion ability of c-TEP (-249,989 and - 303,692 kT) was more than 19 times than that of p-TEP (-12,905 kT), which would accelerate foulant layer formation. In addition, below the critical value, the increased SFR with Ca2+ concentration could be explained by integrating Flory-Huggins lattice theory with the preferential intermolecular coordination. Above the critical value, the decreased SFR can be attributed to the formation of a "large-size crack structure" cake layer from the p-TEP. This study revealed fundamental mechanisms of membrane fouling caused by TEP, greatly deepening understanding of TEP fouling, and facilitating to development of effective fouling control strategies.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
29
|
Bulk cross-linked hydroxyethyl cellulose-silica composite membrane for acid-stable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Xu M, Ma S, Li J, Yuan M, Gao J, Xue J, Wang M. Multifunctional 3D polydimethylsiloxane modified MoS2@biomass-derived carbon composite for oil/water separation and organic dye adsorption/photocatalysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Nguyen HT, Bui HM, Wang YF, You SJ. Antifouling catalytic mixed-matrix membranes based on polyethersulfone and composition-optimized Zn-Cu-Fe-O CWAO catalyst under dark ambient conditions. ENVIRONMENTAL TECHNOLOGY 2022:1-17. [PMID: 35138237 DOI: 10.1080/09593330.2022.2041106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Besides photocatalysts, novel catalytic wet-air oxidation (CWAO) catalysts capable of operating under mild conditions are a potential candidate to fabricate antifouling filtration membranes. This study optimized the CWAO catalyst consisting of three metal oxide components (ZnO, CuO, and Fe3O4) and used it to fabricate composite membranes with PES (polyethersulfone). The catalyst was characterized by methods such as FTIR, BET, XRD, UV-Vis DRS, XPS, ESR. The activity of the catalyst and the composite membranes was tested by the Acid Yellow 42 (AY42) degradation experiments in both cases with and without hydrogen peroxide at room conditions with air aeration. The pure water fluxes of composite membranes were also investigated based on a vacuum filtration system. The major degradation pathways of AY42 by the catalyst were proposed from the DFT (Density Functional Theory) and NBO (Natural Bond Orbital) calculations. The results showed that the optimal catalyst has molar ratios of Zn, Cu, and Fe metal ions of 0.05, 0.588, and 0.362, respectively, with AY42 decomposition efficiency of 88% in 3 h. The main factors affecting the catalytic efficiency of the CWAO catalyst determined from the trapping experiment were e- and O2. The results from different materials characterization methods have demonstrated the successful synthesis of the catalyst with a high surface area (103.5 m2/g) and small pore diameters (∼10 nm). The AY42 degradation of composite membranes was stable over five repeated cycles with over 70% efficiency. The pure water fluxes of composite membranes have also been significantly improved and are proportional to catalyst contents.
Collapse
Affiliation(s)
- Hieu Trung Nguyen
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, Vietnam
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
32
|
Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H. A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. CHEMOSPHERE 2022; 288:132490. [PMID: 34624347 DOI: 10.1016/j.chemosphere.2021.132490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
It is of great significance to develop novel membranes with dual-function of simultaneously separating oil/water emulsion and degrading the contained water-miscible toxic organic components. To meet this requirement, a dual-functional Ni nanoparticles (NPs)@Ag/C-carbon nanotubes (CNTs) composite membrane was fabricated via electroless nickel plating strategy in this study. The as-prepared composite membrane possessed superhydrophilicity with water contact angle of 0° and splendid underwater oleophobic property with oil contact angle of 142°. When the membrane was applied for separation of surfactant stabilized oil-in-water emulsion, high permeate flux (about 97 L m-2·h-1 under gravity), oil rejection (about 98.8%) and antifouling property were achieved. Benefitting from the NiNPs@Ag/C-CNTs layer on membrane surface, the composite membrane exhibited high catalytic degradation activity for water-miscible toxic organic pollutant (4-nitrophenol) with addition of NaBH4 in a flow-through mode. Meanwhile, the NiNPs@Ag/C-CNTs composite membrane possessed excellent durability, which was verified by the good structural integrity even under ultrasonic treatment. The cost-efficiency, high separation and degradation performance of the prepared membrane suggested its great potential for treatment of oily wastewater.
Collapse
Affiliation(s)
- Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
33
|
Stabilize thin nanoparticle layer of zeolitic imidazole framework-8 (ZIF-8) on different PVDF substrates by contra-diffusion method for high-efficiency ultrafiltration application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Lee WX, Akhavan Farid A, Namazi H. Investigation of anodised surface complexity and its correlation with surface hydrophilicity using fractal analysis. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Mao H, Zhou S, Shi S, Xue A, Li M, Cai J, Zhao Y, Xing W. Anti-fouling and easy-cleaning PVDF membranes blended with hydrophilic thermo-responsive nanofibers for efficient biological wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Zhang W, Guo D, Li Z, Shen L, Li R, Zhang M, Jiao Y, Xu Y, Lin H. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119866] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Liu Y, Shen L, Huang Z, Liu J, Xu Y, Li R, Zhang M, Hong H, Lin H. A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119925] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Li L, Sheng S, Wang H, Qu T, Hou D, Wang D, Sheng M. Electrodeposition of
Ni‐P
alloy from deep eutectic solvent and its electrocatalytic activity toward hydrogen evolution reaction. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Li
- School of Iron and Steel, Soochow University Suzhou China
| | - Shizhan Sheng
- School of Iron and Steel, Soochow University Suzhou China
| | - Huihua Wang
- School of Iron and Steel, Soochow University Suzhou China
| | - Tianpeng Qu
- School of Iron and Steel, Soochow University Suzhou China
| | - Dong Hou
- School of Iron and Steel, Soochow University Suzhou China
| | - Deyong Wang
- School of Iron and Steel, Soochow University Suzhou China
| | - Minqi Sheng
- School of Iron and Steel, Soochow University Suzhou China
| |
Collapse
|