1
|
Chen A, Wang C, Cheng Z, Kennes C, Qiu S, Chen J. Enhancing bacterial biodegradation of n-hexane by utilizing the adsorption capacity of non-degrading fungi. CHEMOSPHERE 2024; 363:142900. [PMID: 39029712 DOI: 10.1016/j.chemosphere.2024.142900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Biodegradation of hydrophobic volatile organic compounds (VOCs) such as n-hexane is limited by their poor accessibility. Constructing fungal-bacterial degradation alliances is an effective approach, but the role of those fungi without the capability to degrade VOCs may have been overlooked. In this study, a non-n-hexane-degrading fungus, Fusarium keratoplasticum FK, was utilized to enhance n-hexane degradation by the bacterium Mycobacterium neworleansense WCJ. It was shown that strain WCJ removed 64.84% of n-hexane (at a concentration of 648.20 mg L-1) over 3 d, and 84.04% after introducing strain FK. Microbial growth kinetic studies revealed that the growth of strain WCJ was also promoted. Through a stepwise adsorption-degradation experiment combined with qPCR technology, it was found that the strain WCJ could utilize the n-hexane pre-adsorbed by strain FK, with an increase in copy number from 108.2662 to 108.7731. Therefore, the non-degrading fungi can improved the accessibility of n-hexane by providing n-hexane adsorbed by the mycelium to the degrading bacteria. In addition, the adsorption tests and characterization of the fungal samples before and after Soxhlet extraction indicated that the adsorption of n-hexane on strain FK conformed to Lagergren's pseudo-second-order kinetics and Freundlich adsorption isotherms, and was correlated with the presence of lipids and nonpolar groups. This study emphasizes the potential role of non-degrading fungi in bioremediation and proposes a viable strategy to enhance the bacterial degradation of hydrophobic VOCs.
Collapse
Affiliation(s)
- Aobo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenjie Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, A Coruña, Spain
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314000, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Xu J, Mu J, Yao Y, Xu Y, Liao J, Ruan H, Shen J. Ion Resource Recovery via Electrodialysis Fabricated with Poly(Arylene Ether Sulfone)-Based Anion Exchange Membrane in Organic Solvent System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306313. [PMID: 37948422 DOI: 10.1002/smll.202306313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Ion resource recovery from organic wastewater is beneficial for achieving emission peaks and carbon neutrality targets. Advanced organic solvent-resistant anion exchange membranes (AEMs) for treating organic wastewater via electrodialysis (ED) are of significant interest. Herein, a kind of 3D network AEM based on poly(arylene ether sulfone) cross-linked with a flexible cross-linker (DBH) for ion resource recovery via ED in organic solvent system is reported. Investigations demonstrate that the as-prepared AEMs show excellent dimensional stability in 60% DMSO (aq.), 60% ethanol (aq.), and 60% acetone (aq.), respectively. For example, the optimized AEM shows very low swelling ratios of 1.04-1.10% in the organic solvents. ED desalination ratio can reach 99.1% after exposure of the AEM to organic solvents for 30 days, and remain > 99% in a mixture solution containing organic solvents and 0.5 m NaCl. Additionally, at a current density of 2.5 mA cm-2, the optimized AEM soaked in organic solvents for 30 days shows a high perm-selectivity (Cl-/SO4 2-) of 133.09 (vs 13.11, Neosepta ACS). The superior ED performance is attributed to the stable continuous sub-nanochannels within AEM confirmed by SAXS, rotational energy barriers, etc. This work shows the potential application of cross-linked AEMs for resource recovery in organic wastewater.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Mu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Zhang L, Xiao Q, Xiao Z, Zhang Y, Weng H, Chen F, Xiao A. Hydrophobic modified agar: Structural characterization and application in encapsulation and release of curcumin. Carbohydr Polym 2023; 308:120644. [PMID: 36813337 DOI: 10.1016/j.carbpol.2023.120644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this study, three kinds of anhydrides with different structures were introduced into agar molecules to study the effects of varying degrees of substitution (DS) and anhydride structures on the physicochemical properties and curcumin (CUR) loading capacity. Increasing the carbon chain length and saturation of the anhydride affects the hydrophobic interaction and hydrogen bonding of the esterified agar, thereby changing the stable structure of the agar. Although the gel performance declined, the hydrophilic carboxyl group and the loose porous structure provide more binding sites for the adsorption of water molecules, hence providing excellent water retention (1700 %). Next, CUR was used as a hydrophobic active ingredient to study agar microspheres' drug encapsulation and in vitro release ability. Results showed that the excellent swelling and hydrophobic structure of esterified agar could promote the encapsulation of CUR (70.3 %). The release process is controlled by pH, and the release of CUR under weak alkaline conditions is significant, which can be explained by the pore structure, swelling characteristics, and carboxyl binding of agar. Therefore, this study shows the application potential of hydrogel microspheres in loading hydrophobic active ingredients and sustained release and provides the possibility for the application of agar in drug delivery systems.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhechen Xiao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Fuquan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
4
|
Gong Y, Chen W, Shen HY, Cheng C. Semi-interpenetrating Polymer-Network Anion Exchange Membrane Based on Quaternized Polyepichlorohydrin and Polyvinyl Alcohol for Acid Recovery by Diffusion Dialysis. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yifei Gong
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Wei Chen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Hai Yang Shen
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| | - Congliang Cheng
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, P.R. China
| |
Collapse
|
5
|
Zhang L, Xiao Q, Zhang Y, Weng H, Wang S, Chen F, Xiao A. A comparative study on the gel transition, structural changes, and emulsifying properties of anhydride-esterified agar with varied degrees of substitution and carbon chain lengths. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Liu M, Wang J, Liu J, Feng Z, Liao S, Li X, Cao M. Tuning side group structures of series-connected di-cations to achieve improved electrodialysis acid recovery performances. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Jang S, Cha JE, Moon SJ, Albers JG, Seo MH, Choi YW, Kim JH. Experimental and Computational Approaches to Sulfonated Poly(arylene ether sulfone) Synthesis Using Different Halogen Atoms at the Reactive Site. MEMBRANES 2022; 12:1286. [PMID: 36557194 PMCID: PMC9785268 DOI: 10.3390/membranes12121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Engineering thermoplastics, such as poly(arylene ether sulfone), are more often synthesized using F-containing monomers rather than Cl-containing monomers because the F atom is considered more electronegative than Cl, leading to a better condensation polymerization reaction. In this study, the reaction's spontaneity improved when Cl atoms were used compared to the case using F atoms. Specifically, sulfonated poly(arylene ether sulfone) was synthesized by reacting 4,4'-dihydroxybiphenyl with two types of biphenyl sulfone monomers containing Cl and F atoms. No significant difference was observed in the structural, elemental, and chemical properties of the two copolymers based on nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and electrochemical impedance spectroscopy. However, the solution viscosity and mechanical strength of the copolymer synthesized with the Cl-terminal monomers were slightly higher than those of the copolymer synthesized with the F-terminal monomers due to higher reaction spontaneity. The first-principle study was employed to elucidate the underlying mechanisms of these reactions.
Collapse
Affiliation(s)
- Seol Jang
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Eun Cha
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
| | - Seung Jae Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Justin Georg Albers
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstrasse 28, 01277 Dresden, Germany
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48547, Republic of Korea
| | - Young-Woo Choi
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Zhu C, Li J, Liao J, Chen Q, Xu Y, Ruan H, Shen J. Acid enrichment via electrodialyser fabricated with poly(vinyl chloride)-based anion exchange membrane: Effect of hydrophobicity of aliphatic side-chains tethered on imidazolium groups. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Merkel A, Čopák L, Golubenko D, Dvořák L, Vavro M, Yaroslavtsev A, Šeda L. Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module. Int J Mol Sci 2022; 23:ijms23116212. [PMID: 35682891 PMCID: PMC9181085 DOI: 10.3390/ijms23116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.
Collapse
Affiliation(s)
- Arthur Merkel
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Ladislav Čopák
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Daniil Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Matej Vavro
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Libor Šeda
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| |
Collapse
|
12
|
Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|