1
|
Li M, Wang P, Yu X, Su Y, Zhao J. Impact of Nuclear Quantum Effects on the Structural Properties of Protonated Water Clusters. J Phys Chem A 2024; 128:5954-5962. [PMID: 39007820 DOI: 10.1021/acs.jpca.4c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nuclear quantum effects (NQEs) play a crucial role in hydrogen-bonded systems due to quantum tunneling and proton fluctuation. Our understanding of how NQEs affect microstructures mainly focuses on bulk phases of liquids and solids but remains deficient for water clusters, including their hydrogen nuclei, hydrogen-bonded configurations, and temperature dependence. Here, we conducted ab initio molecular dynamics (MD) and path integral MD simulations to investigate the influence of NQEs on the structural properties of protonated water clusters H+(H2O)n (n = 3, 6, 9, 12). The results reveal that the NQEs become less evident as the cluster size increases due to the competition between NQEs and electrostatic interactions. Simulations of several H+(H2O)6 isomers at different temperatures indicate that the effect of elevated temperature on proton transfer is related to the initial structure. Interestingly, the process of proton transfer also involves the interconversion between Zundel-type and Eigen-type isomers. These findings significantly deepen our understanding of ion-water and water-water interactions, opening new avenues for the study of hydrated ion clusters and related systems.
Collapse
Affiliation(s)
- Mengxu Li
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | | | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Nosova E, Achoh A, Zabolotsky V, Melnikov S. Electrodialysis Desalination with Simultaneous pH Adjustment Using Bilayer and Bipolar Membranes, Modeling and Experiment. MEMBRANES 2022; 12:1102. [PMID: 36363657 PMCID: PMC9697083 DOI: 10.3390/membranes12111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A kinetic model of the bipolar electrodialysis process with a two-chamber unit cell formed by a bilayer (bipolar or asymmetric bipolar) and cation-exchange membrane is proposed. The model allows describing various processes: pH adjustment of strong electrolyte solutions, the conversion of a salt of a weak acid, pH adjustment of a mixture of strong and weak electrolytes. The model considers the non-ideal selectivity of the bilayer membrane, as well as the competitive transfer of cations (hydrogen and sodium ions) through the cation-exchange membrane. Analytical expressions are obtained that describe the kinetic dependences of pH and concentration of ionic components in the desalination (acidification) compartment for various cases. Comparison of experimental data with calculations results show a good qualitative and, in some cases, quantitative agreement between experimental and calculated data. The model can be used to predict the performance of small bipolar membrane electrodialysis modules designed for pH adjustment processes.
Collapse
Affiliation(s)
| | | | | | - Stanislav Melnikov
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| |
Collapse
|
5
|
León T, López J, Torres R, Grau J, Jofre L, Cortina JL. Describing ion transport and water splitting in an electrodialysis stack with bipolar membranes by a 2-D model: Experimental validation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Liu W, Mao Y, Li Y, Zhang X, Luo F, Wang X, Han X, Xu C. Systematic research on the bipolar membrane reverse electrodialysis performance and its application in electrodialysis desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|