1
|
Gupta KM, Aitipamula S, Chin X, Chow PS. Synergistic Computational and Experimental Investigation of Covalent Organic Frameworks for Efficient Alcohol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26551-26564. [PMID: 40273888 DOI: 10.1021/acsami.5c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covalent organic frameworks (COFs), a promising class of nanoporous materials, have received significant attention for membrane separation. Currently, several COFs are reported for alcohol dehydration, but they are not efficient owing to the pervasive challenge to separate small-sized molecular mixture. Herein, first we have computationally explored a series of COFs with different functionality and aperture size as pervaporation (PV) membrane and identified a novel COF for efficient dehydration of water/alcohol mixtures (90 wt % IPA, 90 wt % n-butanol and 90 wt % t-butanol). Subsequently, the best-performing COF was experimentally synthesized and characterized, and its sorption properties were correlated with computational results. Molecular dynamics (MD) simulations revealed that solvent permeation fluxes are predominantly influenced by the pore aperture of COFs, and larger pore aperture exhibits higher flux. Conversely, the separation factor is primarily determined by the polarity of the pore functional groups. Among the tested COF membranes, TpPa-1-OC3H6OCH3 demonstrated superior performance, surpassing the current state-of-the-art membranes. The activation energy (Ea) for water permeation in alcohol mixtures through TpPa-1-OC3H6OCH3 is mostly governed by water-alcohol interactions. Furthermore, experimental evaluation of the COFs indicated a plate-like morphology for TpPa-1-OC3H6OCH3 which ascertained a 2D-sheet-like structure. TpPa-1 showed greater sorption than TpPa-1-OC3H6OCH3 with all of the solvents tested owing to the inability of the solvent molecules to enter the relatively small pores in the later COF. This is in accordance with the MD simulation predictions, which indicated that the solvent molecules cannot penetrate the small pores of TpPa-1-OC3H6OCH3. This work synergistically integrates computational and experimental approaches to develop novel COFs with superior performance compared to previously reported PV membranes, paving the way for advanced membranes for sustainable solvent recovery.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, J&K, India
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
2
|
Wang A, Liu X, Feng S, Wang Y, Song Y, Gao Y. Synthesis and Biomedical Applications of Covalent Organic Frameworks for Disease Diagnosis and Therapy. Chembiochem 2025; 26:e202400807. [PMID: 39537572 DOI: 10.1002/cbic.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as a distinguished class of porous materials. Owing to their ability to be constructed through covalent bonds involving light elements, such as hydrogen, boron, carbon, nitrogen, and oxygen, COFs offer greater stability and lower cytotoxicity than metal-organic frameworks do, addressing critical limitations in in vivo applications. Their unique attributes, such as high surface area, customizable pore sizes, and versatile surface functionalities, make them ideal for various biomedical applications. This review aims to provide an overview of the recent advancements in modern COFs for biomedical uses. First, a variety of methods for the synthesis of COFs are outlined, which ensures their suitability for medical use. Next, we delve into innovative biomedical applications, emphasizing their roles in disease diagnosis and therapies. Finally, challenges, such as clinical translation, biocompatibility, and controlled drug release, are critically discussed, providing comprehensive insight into the potential of COFs in revolutionizing biomedical technologies. Overall, this review offers a comprehensive overview of COFs' capabilities and future prospects in enhancing biomedical technologies.
Collapse
Affiliation(s)
- Anyun Wang
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Shujun Feng
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanping Wang
- School of Medical Imaging, Wannan Medical College, Wuhu, 241002, China
| | - Yujun Song
- College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu, 241002, China
| |
Collapse
|
3
|
Jin Y, Li M, Yang Y. Covalent Organic Frameworks for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412600. [PMID: 39661725 PMCID: PMC11791980 DOI: 10.1002/advs.202412600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Membranes with switchable wettability, solvent resistance, and toughness have emerged as promising materials for separation applications. However, challenges like limited mechanical strength, poor chemical stability, and structural defects during membrane fabrication hinder their widespread adoption. Covalent organic frameworks (COFs), crystalline materials constructed from organic molecules connected by covalent bonds, offer a promising solution due to their high porosity, stability, and customizable properties. The ordered structures and customizable functionality provide COFs with a lightweight framework, large surface area, and tunable pore sizes, which have attracted increasing attention for their applications in membrane separations. Recent research has extensively explored the preparation strategies of COF membranes and their applications in various separation processes. This review uniquely delves into the influence of various COF membrane fabrication techniques, including interfacial polymerization, layer-by-layer assembly, and in situ growth, on membrane thickness and performance. It comprehensively explores the design strategies and potential applications of these methods, with a particular focus on gas separation, oil/water separation, and organic solvent nanofiltration. Furthermore, future opportunities, challenges within this field, and potential directions for future development are proposed.
Collapse
Affiliation(s)
- Yuan‐Hang Jin
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Meng‐Hao Li
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| |
Collapse
|
4
|
Sun Q, Song Z, Du J, Yao A, Liu L, He W, Hassan SU, Guan J, Liu J. Covalent Organic Framework Membranes with Regulated Orientation for Monovalent Cation Sieving. ACS NANO 2024; 18:27065-27076. [PMID: 39308162 DOI: 10.1021/acsnano.4c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation. Within these confined channels, the membrane with vertically aligned pores and micron-scale stacking thickness demonstrates rapid and selective transportation of Li+ ions over Na+ and K+ ions, achieving Li+/K+ and Li+/Na+ selectivity ratios of 38.7 and 7.2, respectively. This research not only reveals regulated orientation and layer stacking in COF membranes via strategic solvent selection but also offers a potent approach for developing membranes specialized in Li+ ion separation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
5
|
Xue R, Liu Y, Wu X, Lv Y, Guo J, Yang GY. Covalent Organic Frameworks Meet Titanium Oxide. ACS NANO 2024. [PMID: 39028766 DOI: 10.1021/acsnano.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yinsheng Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
6
|
Cai Y, Yu Y, Wu J, Qu J, Hu J, Tian D, Li J. Recent advances of pure/independent covalent organic framework membrane materials: preparation, properties and separation applications. NANOSCALE 2024; 16:961-977. [PMID: 38108437 DOI: 10.1039/d3nr05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Covalent organic frameworks (COF) are porous crystalline polymers connected by covalent bonds. Due to their inherent high specific surface area, tunable pore size, and good stability, they have attracted extensive attention from researchers. In recent years, COF membrane materials developed rapidly, and a large amount of research work has been presented on the preparation methods, properties, and applications of COF membranes. This review focuses on the research on independent/pure continuous COF membranes. First, based on the membrane formation mechanism, COF membrane preparation methods are categorized into two main groups: bottom-up and top-down. Four methods are presented, namely, solvothermal, interfacial polymerization, steam-assisted conversion, and layer by layer. Then, the aperture, hydrophilicity/hydrophobicity and surface charge properties of COF membranes are summarized and outlined. According to the application directions of gas separation, water treatment, organic solvent nanofiltration, pervaporation and energy, the latest research results of COF membranes are presented. Finally, the challenges and future directions of COF membranes are summarized and an outlook provided. It is hoped that this work will inspire and motivate researchers in related fields.
Collapse
Affiliation(s)
- Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
7
|
Burke DW, Jiang Z, Livingston AG, Dichtel WR. 2D Covalent Organic Framework Membranes for Liquid-Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300525. [PMID: 37014260 DOI: 10.1002/adma.202300525] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.
Collapse
Affiliation(s)
- David W Burke
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Jiang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Department of Membrane Research, Exactmer Limited, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, RM10 7FN, UK
| | - Andrew G Livingston
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Liu Q, Chen M, Sun L, Liu G, Xu R. Pore density effect on separations of water/ethanol and methanol/ethanol through graphene oxide membranes: A theoretical study. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zhang Z, Wu H, Cao L, Wang M, Wang H, Pan F, Jiang Z. Engineering fast water-selective pathways in graphene oxide membranes by porous vermiculite for efficient alcohol dehydration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Lin HB, Zhao JG, Lu N, Han Q, Wang JQ, Guan JM, Wang X, Liu F. Prussian Blue/Cellulose Acetate Thin Film Composite Nanofiltration Membrane for Molecular Sieving and Catalytic Fouling Resistance. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
11
|
Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. J Colloid Interface Sci 2022; 622:11-20. [DOI: 10.1016/j.jcis.2022.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
|
12
|
Cao N, Liu J, Wang Y, Zhou Y, Zhao M, Ban Y, Yang W. MIL-53 and its OH-bonded variants for bio-polyol adsorption from aqueous solution. RSC Adv 2022; 12:21681-21689. [PMID: 35975036 PMCID: PMC9350665 DOI: 10.1039/d2ra03203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
The adsorption of bio-polyols from dilute aqueous solution is important but faces challenges in the sustainable bio-refinery process. One solution to increase adsorption efficiency is to leverage host–guest interactions between the polyols and materials to grant a preference for polyols. In this study, we synthesized MIL-53 and diverse OH-bonded variants, and studied their adsorption properties towards ethanediol, 1,3-propanediol and glycerol in water. Among the four materials, OH–MIL-53 exhibited fast adsorption kinetics and high capacity, and could be completely regenerated through ethanol elution. Hydrophobic interactions between the alkyl chains of the polyols and the organic linkers of OH–MIL-53 and hydrogen bonding interactions between their OH groups were identified. The synergistic effect of the host–guest interactions is responsible for the unique adsorption performances of OH–MIL-53 towards polyols, and particularly for 1,3-propanediol. Delicate host–guest interaction drives OH-bonded MOF to capture bio-polyols from diluted aqueous solution, with high capacity, fast kinetics and recyclability.![]()
Collapse
Affiliation(s)
- Na Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiayi Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,Zhang Dayu School of Chemistry, Dalian University of Technology Dalian 116024 China
| | - Yuecheng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingwu Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Meng Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Wang G, Chen Y, Pan C, Chen H, Ding S, Chen X. Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li G, Wang W, Liu Y, Fang Q, Lu N, Chen J, Xu S, Liu F. Solar-catalytic membranes constructed by graphene oxide and prussian blue@covalent triazine framework “active mega cubes” for ultrafast water transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|