1
|
Xiang W, Wang X, Zhang M, Aderibigbe AD, Wang F, Zhao Z, Fan Y, Huey BD, McCutcheon JR, Li B. Continuous Monitoring of Lithium Ions in Lithium-Rich Brine Using Ion Selective Electrode Sensors Modified with Polyelectrolyte Multilayers of Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22442-22455. [PMID: 39626215 DOI: 10.1021/acs.est.4c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Monitoring lithium ions (Li+) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li+ ISE sensors and enables continuous monitoring of Li+ concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.5 bilayers of PAH/PSS coating, the Li+ ISE sensors possess a high Nernst slope (59.14 mV/dec), rapid response (<10 s), and superior selectivity against competitive ions (Na+, log Ks = -2.35; K+, log Ks = -2.47; Ca2+, log Ks = -4.05; Mg2+, log Ks = -4.18). The impedance (85.1 kΩ) of (PAH/PSS)5.5-coated sensors is 1 order of magnitude lower than that of electrospray ion-selective membrane (E-ISM) Li+ sensors (830 kΩ), attributed to the ultrathin (45.3 nm) and highly dielectric PAH/PSS bilayers. During a 15-day continuous monitoring test in LrB, the (PAH/PSS)5.5-coated Li+ ISE sensors with their superhydrophilic and smooth surface diminish nucleation sites for scaling agents (e.g., Ca2+ and SO42-) and consequently mitigate gypsum scaling. Moreover, a brine-tailored denoising data processing algorithm (bt-DDPA), coupled with the salinity-adjusted mathematical model with Lagrange interpolation, effectively captures Li+ fluctuation by filtering out anomalies and reducing sensor drift in brine. Bt-DDPA alleviates the discrepancy between the sensor readings and the lab-based validation results by 46.06%. This study demonstrates that the integration of material advancement (PAH/PSS coating) with sensor data processing (bt-DDPA) bolsters continuous and accurate Li+ monitoring in LrB, crucial for brine water treatment and resource recovery.
Collapse
Affiliation(s)
- Wenjun Xiang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abiodun D Aderibigbe
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiyuan Zhao
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey R McCutcheon
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Roy Barman S, Gavit P, Chowdhury S, Chatterjee K, Nain A. 3D-Printed Materials for Wastewater Treatment. JACS AU 2023; 3:2930-2947. [PMID: 38034974 PMCID: PMC10685417 DOI: 10.1021/jacsau.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
The increasing levels of water pollution pose an imminent threat to human health and the environment. Current modalities of wastewater treatment necessitate expensive instrumentation and generate large amounts of waste, thus failing to provide ecofriendly and sustainable solutions for water purification. Over the years, novel additive manufacturing technology, also known as three-dimensional (3D) printing, has propelled remarkable innovation in different disciplines owing to its capability to fabricate customized geometric objects rapidly and cost-effectively with minimal byproducts and hence undoubtedly emerged as a promising alternative for wastewater treatment. Especially in membrane technology, 3D printing enables the designing of ultrathin membranes and membrane modules layer-by-layer with different morphologies, complex hierarchical structures, and a wide variety of materials otherwise unmet using conventional fabrication strategies. Extensive research has been dedicated to preparing membrane spacers with excellent surface properties, potentially improving the membrane filtration performance for water remediation. The revolutionary developments in membrane module fabrication have driven the utilization of 3D printing approaches toward manufacturing advanced membrane components, including biocarriers, sorbents, catalysts, and even whole membranes. This perspective highlights recent advances and essential outcomes in 3D printing technologies for wastewater treatment. First, different 3D printing techniques, such as material extrusion, selective laser sintering (SLS), and vat photopolymerization, emphasizing membrane fabrication, are briefly discussed. Importantly, in this Perspective, we focus on the unique 3D-printed membrane modules, namely, feed spacers, biocarriers, sorbents, and so on. The unparalleled advantages of 3D printed membrane components in surface area, geometry, and thickness and their influence on antifouling, removal efficiency, and overall membrane performance are underlined. Moreover, the salient applications of 3D printing technologies for water desalination, oil-water separation, heavy metal and organic pollutant removal, and nuclear decontamination are also outlined. This Perspective summarizes the recent works, current limitations, and future outlook of 3D-printed membrane technologies for wastewater treatment.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Pratik Gavit
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Saswat Chowdhury
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Amit Nain
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
3
|
Darestani-Farahani M, Ma F, Patel V, Selvaganapathy PR, Kruse P. An ion-selective chemiresistive platform as demonstrated for the detection of nitrogen species in water. Analyst 2023; 148:5731-5744. [PMID: 37840463 DOI: 10.1039/d3an01267k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The use of ion-selective electrodes (ISE) is a well-established technique for the detection of ions in aqueous solutions but requires the use of a reference electrode. Here, we introduce a platform of ion-selective chemiresistors for the detection of nitrogen species in water as an alternative method without the need for reference electrodes. Chemiresistors have a sensitive surface that is prone to damage during operation in aqueous solutions. By applying a layer of ion-selective membrane to the surface of the chemiresistive device, the surface becomes protected and highly selective. We demonstrate both anion-selective (NO3-, NO2-) and cation-selective (NH4+) membranes. The nitrate sensors are able to measure nitrate ions in a range of 2.2-220 ppm with a detection limit of 0.3 ppm. The nitrite sensors respond between 67 ppb and 67 ppm of nitrite ions (64 ppb detection limit). The ammonium sensors can measure ammonium concentrations in a wide range from 10 ppb to 100 ppm (0.5 ppb detection limit). The fast responses to nitrate and nitrite are due to a mechanism involving electrostatic gating repulsion between negative charge carriers of the film and anions while ammonium detection arises from two mechanisms based on electrostatic gating repulsion and adsorption of ammonium ions at the surface of the p-doped chemiresistive film. The adsorption phenomenon slows down the recovery time of the ammonium sensor. This sensor design is a new platform to continuously monitor ions in industrial, domestic, and environmental water resources by robust chemiresistive devices.
Collapse
Affiliation(s)
- Maryam Darestani-Farahani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Fanqing Ma
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Vinay Patel
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| | | | - Peter Kruse
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
4
|
Balasubramanian PS, Lal A. GHz ultrasonic sensor for ionic content with high sensitivity and localization. iScience 2023; 26:106907. [PMID: 37305695 PMCID: PMC10250832 DOI: 10.1016/j.isci.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Sensing the ionic content of a solution at high spatial and temporal resolution and sensitivity is a challenge in nanosensing. This paper describes a comprehensive investigation of the possibility of GHz ultrasound acoustic impedance sensors to sense the content of an ionic aqueous medium. At the 1.55 GHz ultrasonic frequency used in this study, the micron-scale wavelength and the decay lengths in liquid result in a highly localized sense volume with the added potential for high temporal resolution and sensitivity. The amplitude of the back reflected pulse is related to the acoustic impedance of the medium and a function of ionic species concentration of the KCl, NaCl, and CaCl2 solutions used in this study. A concentration sensitivity as high as 1 mM and concentration detection range of 0 to 3 M was achieved. These bulk acoustic wave pulse-echo acoustic impedance sensors can also be used to record dynamic ionic flux.
Collapse
Affiliation(s)
| | - Amit Lal
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, Mahmud MS, Chrysochoou M, Yang M, Vadas TM, Lei Y, Li B. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13546-13564. [PMID: 36121207 DOI: 10.1021/acs.est.2c03562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution. First, the barriers for reliable RTCSM data acquisition are elucidated by examining typical soil monitoring techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing challenges of the RTCSM sensor network, data transmission, data processing, and personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation, food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental fields is underscored through illuminating future directions and perspectives in this systematic review.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thomas Funk
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ishrat Rashid
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nefeli Bompoti
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Shaad Mahmud
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Meijian Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Fan Y, Wang X, Qian X, Dixit A, Herman B, Lei Y, McCutcheon J, Li B. Enhancing the Understanding of Soil Nitrogen Fate Using a 3D-Electrospray Sensor Roll Casted with a Thin-Layer Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4905-4914. [PMID: 35274533 DOI: 10.1021/acs.est.1c05661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate and continuous monitoring of soil nitrogen is critical for determining its fate and providing early warning for swift soil nutrient management. However, the accuracy of existing electrochemical sensors is hurdled by the immobility of targeted ions, ion adsorption to soil particles, and sensor reading noise and drifting over time. In this study, polyacrylamide hydrogel with a thickness of 0.45 μm was coated on the surface of solid-state ion-selective membrane (S-ISM) sensors to absorb water contained in soil and, consequently, enhance the accuracy (R2 > 0.98) and stability (drifting < 0.3 mV/h) of these sensors monitoring ammonium (NH4+) and nitrate (NO3-) ions in soil. An ion transport model was built to simulate the long-term NH4+ dynamic process (R2 > 0.7) by considering the soil adsorption process and soil complexity. Furthermore, a soil-based denoising data processing algorithm (S-DDPA) was developed based on the unique features of soil sensors including the nonlinear mass transfer and ion diffusion on the heterogeneous sensor-hydrogel-soil interface. The 14 day tests using real-world soil demonstrated the effectiveness of S-DDPA to eliminate false signals and retrieve the actual soil nitrogen information for accurate (error: <2 mg/L) and continuous monitoring.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Qian
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anand Dixit
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|