1
|
Mesquita CRS, Gómez AOC, Cotta CPN, Cotta RM. Comparison of Different Polymeric Membranes in Direct Contact Membrane Distillation and Air Gap Membrane Distillation Configurations. MEMBRANES 2025; 15:91. [PMID: 40137043 PMCID: PMC11943998 DOI: 10.3390/membranes15030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
Membrane distillation (MD) is an evolving thermal separation technique most frequently aimed at water desalination, compatible with low-grade heat sources such as waste heat from thermal engines, solar collectors, and high-concentration photovoltaic panels. This study presents a comprehensive theoretical-experimental evaluation of three commercial membranes of different materials (PE, PVDF, and PTFE), tested for two distinct MD modules-a Direct Contact Membrane Distillation (DCMD) module and an Air Gap Membrane Distillation (AGMD) module-analyzing the impact of key operational parameters on the performance of the individual membranes in each configuration. The results showed that increasing the feed saline concentration from 7 g/L to 70 g/L led to distillate flux reductions of 12.2% in the DCMD module and 42.9% in the AGMD one, averaged over the whole set of experiments. The increase in feed temperature from 65 °C to 85 °C resulted in distillate fluxes up to 2.36 times higher in the DCMD module and 2.70 times higher in the AGMD one. The PE-made membrane demonstrated the highest distillate fluxes, while the PVDF and PTFE membranes exhibited superior performance under high-salinity conditions in the AGMD module. Membranes with high contact angles, such as PTFE with 143.4°, performed better under high salinity conditions. Variations in operational parameters, such as flow rate and temperature, markedly affect the temperature and concentration polarization effects. The analyses underscored the necessity of a careful selection of membrane type for each distillation configuration by the specific characteristics of the process and its operational conditions. In addition to experimental findings, the proposed heat and mass transfer-reduced model showed good agreement with experimental data, with deviations within ±15%, effectively capturing the influence of operational parameters. Theoretical predictions showed good agreement with experimental data, confirming the model's validity, which can be applied to optimization methodologies to improve the membrane distillation process.
Collapse
Affiliation(s)
- Cristiane Raquel Sousa Mesquita
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Abdul Orlando Cárdenas Gómez
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Carolina Palma Naveira Cotta
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
| | - Renato Machado Cotta
- Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Mechanical Engineering Department, POLI & COPPE/UFRJ, Federal University of Rio de Janeiro, 360 Av. Moniz de Aragão, CT-2–Cidade Universitária, Rio de Janeiro 21941-594, Brazil; (C.R.S.M.); (A.O.C.G.)
- Laboratory of Sustainable Energies Technologies, LATES-GTM, Navy Research Institute, IPqM/CTMRJ, General Directorate of Nuclear and Technological Development, DGDNTM, Brazilian Navy, 02 R. Ipiru–Cacuia, Rio de Janeiro 21931-095, Brazil
| |
Collapse
|
2
|
Hu J, Harandi HB, Chen Y, Zhang L, Yin H, He T. Anisotropic gypsum scaling of corrugated polyvinylidene fluoride hydrophobic membrane in direct contact membrane distillation. WATER RESEARCH 2023; 244:120513. [PMID: 37651864 DOI: 10.1016/j.watres.2023.120513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.
Collapse
Affiliation(s)
- Jiaqi Hu
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hesam Bazargan Harandi
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yecang Chen
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Liwei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Liu C, Liu J, Zhu L, Xiong H. Treatment of mariculture wastewater by an integrated ultrasonic stripping-membrane distillation (US-MD) system: Effect of operating parameters on effluent quality and membrane fouling mitigation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Yang C. Neural networks for predicting air gap membrane distillation performance. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Tunable hydrophobicity and roughness on PVDF surface by grafting to mode – Approach to enhance membrane performance in membrane distillation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|