1
|
Xiang Y, Lu L, Luo Y, Xu RG, Zeng G, Leng Y. Understanding the Termination Effect of Ti 3C 2T X MXene Membrane on Water Structure and Interaction with Alginate Foulants: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:975-985. [PMID: 39760392 DOI: 10.1021/acs.langmuir.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The effects of termination functional groups of the Ti3C2Tx MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups. Further steered molecular dynamics (SMD) simulations show that M alginate monomers exhibit significant binding with the MXene membrane surface with O termination, due to the strong electrostatic interaction and the van der Waals attraction. In contrast, the binding between the alginate monomers and the MXene membrane surface with OH termination is negligible, as the stable hydration water network prevents them from direct contact. In addition, SMD simulation results show that calcium (Ca2+) ions could significantly enhance the surface fouling between M alginate monomers and the MXene with an O termination through the formation of contact ionic pair (CIP) and solvent-shared ionic pair (SSIP) structures.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Lei Lu
- Department of Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Ye Luo
- Department of Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Guangyong Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
2
|
Zheng S, Gissinger J, Hsiao BS, Wei T. Interfacial Polymerization of Aromatic Polyamide Reverse Osmosis Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65677-65686. [PMID: 39552280 DOI: 10.1021/acsami.4c16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Polyamide membranes are widely used in reverse osmosis (RO) water treatment, yet the mechanism of interfacial polymerization during membrane formation is not fully understood. In this work, we perform atomistic molecular dynamics simulations to explore the cross-linking of trimesoyl chloride (TMC) and m-phenylenediamine (MPD) monomers at the aqueous-organic interface. Our studies show that the solution interface provides a function of "concentration and dispersion" of monomers for cross-linking. The process starts with rapid cross-linking, followed by slower kinetics. Initially, amphiphilic MPD monomers diffuse in water and accumulate at the solution interface to interact with TMC monomers from the organic phase. As cross-linking progresses, a precross-linked thin film forms, reducing monomer diffusion and reaction rates. However, the structural flexibility of the amphiphilic film, influenced by interfacial fluctuations and mixed interactions with water and the organic solvent at the solution interface, promotes further cross-linking. The solubility of MPD and TMC monomers in different organic solvents (cyclohexane versus n-hexane) affects the cross-linking rate and surface homogeneity, leading to slight variations in the structure and size distribution of subnanopores. Our study of the interfacial polymerization process in explicit solvents is essential for understanding membrane formation in various solvents, which will be crucial for optimal polyamide membrane design.
Collapse
Affiliation(s)
- Size Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, P. R. China
| | - Jacob Gissinger
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Xue Q, Jiao Z, Pan W, Liu X, Fu J, Zhang A. Multiscale computational simulation of pollutant behavior at water interfaces. WATER RESEARCH 2024; 250:121043. [PMID: 38154340 DOI: 10.1016/j.watres.2023.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The investigation of pollutant behavior at water interfaces is critical to understand pollution in aquatic systems. Computational methods allow us to overcome the limitations of experimental analysis, delivering valuable insights into the chemical mechanisms and structural characteristics of pollutant behavior at interfaces across a range of scales, from microscopic to mesoscopic. Quantum mechanics, all-atom molecular dynamics simulations, coarse-grained molecular dynamics simulations, and dissipative particle dynamics simulations represent diverse molecular interaction calculation methods that can effectively model pollutant behavior at environmental interfaces from atomic to mesoscopic scales. These methods provide a rich variety of information on pollutant interactions with water surfaces. This review synthesizes the advancements in applying typical computational methods to the formation, adsorption, binding, and catalytic conversion of pollutants at water interfaces. By drawing on recent advancements, we critically examine the current challenges and offer our perspective on future directions. This review seeks to advance our understanding of computational techniques for elucidating pollutant behavior at water interfaces, a critical aspect of water research.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiyue Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Santos JRC, Abreu PE, Marques JMC. Aggregation patterns of curcumin and piperine mixtures in different polar media. Phys Chem Chem Phys 2023; 25:19899-19910. [PMID: 37458414 DOI: 10.1039/d3cp00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
This work reports a thorough molecular dynamics investigation on the aggregation patterns of curcumin and piperine in water, ethanol and a mixture of both solvents. The low solubility of curcumin in water results in a rapid formation of very stable dimers for both keto and enol tautomers. In agreement with a higher solubility, piperine molecules move closer and farther apart several times during the simulation, which indicates the formation of a less stable dimer in water. In contrast, both curcumin and piperine are soluble in ethanol and, thus, dimers can hardly be formed in this media. In comparison with a pure-water solvent, a 30 : 70 mixture of ethanol and water significantly reduces the probability of formation of most dimers of curcumin and piperine molecules. The simulations show that larger clusters may be complex structures, but the formation of stacks (in the case of piperine and enol tautomer of curcumin) and cages (when the keto tautomer of curcumin is involved) are not rare. Furthermore, it is shown that each single molecule presents a certain degree of mobility in the cluster, especially on the surface, but without leading to dissociation.
Collapse
Affiliation(s)
- J R C Santos
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - P E Abreu
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - J M C Marques
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
5
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
6
|
|
7
|
Pan Z, Zeng B, Yu G, Teng J, Zhang H, Shen L, Yang L, Lin H. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156912. [PMID: 35753486 DOI: 10.1016/j.scitotenv.2022.156912] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m-1·kg-1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0-1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|