1
|
Wei Y, Abkar L, Senavirathna B, Beck SE, Mohn W, Seitcher M, Bérubé PR. Gravity-Driven Membrane Filtration with Passive Hydraulic Fouling Control for Drinking Water Treatment: Demonstration of Long-Term Performance at Full Scale. ACS ES&T WATER 2025; 5:70-80. [PMID: 39816974 PMCID: PMC11731288 DOI: 10.1021/acsestwater.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e., total coliform, Escherichia coli, turbidity, and membrane integrity). The instantaneous temperature-corrected permeability (TCP) varied seasonally, being greater during the winter months. The overall TCP decreased slowly to ∼60% of the initial value by the end of 3 years, a TCP that is much greater than would have been expected without passive hydraulic fouling control. Although it was not possible to directly link the observed seasonal changes in TCP to potential seasonal changes in the biofilm microbiome, the analysis did suggest that the lower TCP during summer months was due to a greater microorganism richness in the feed and presence of filamentous, stalked, and biofilm-forming bacteria in the biofilm. Operation with higher trans-membrane pressure (i.e., ∼30 vs ∼20 mbar) and more frequent passive hydraulic fouling control (i.e., every 12 vs 24 h) enabled a greater flow to be sustained. The study demonstrated the long-term robustness and performance of GDMF with passive hydraulic fouling control for drinking water treatment.
Collapse
Affiliation(s)
- Yixin Wei
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Leili Abkar
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Binura Senavirathna
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sara E. Beck
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - William Mohn
- Department
of Microbiology and Immunology, The University
of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matt Seitcher
- Nuu-Chah-Nulth
Tribal Council, 5001
Mission Road, Port Alberni, British Columbia V9Y 7M2, Canada
| | - Pierre R. Bérubé
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Ji Z, Wang J, Yan Z, Liu C, Liu Z, Chang H, Qu F, Liang H. Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment. WATER RESEARCH 2024; 266:122332. [PMID: 39216126 DOI: 10.1016/j.watres.2024.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 μS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 μS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.
Collapse
Affiliation(s)
- Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, 710055, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Ranieri L, Esposito R, Nunes SP, Vrouwenvelder JS, Fortunato L. Biofilm rigidity, mechanics and composition in seawater desalination pretreatment employing ultrafiltration and microfiltration membranes. WATER RESEARCH 2024; 253:121282. [PMID: 38341976 DOI: 10.1016/j.watres.2024.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The choice of appropriate biofilm control strategies in membrane systems for seawater desalination pretreatment relies on understanding the properties of the biofilm formed on the membrane. This study reveals how the biofilm composition, including both organic and inorganic, influenced the biofilm behavior under mechanical loading. The investigation was conducted on two Gravity-Driven Membrane reactors employing Microfiltration (MF) and Ultrafiltration (UF) membrane for the pretreatment of raw seawater. After a stabilization period of 20 days (Phase I), a biofilm behavior test was introduced (Phase II) to evaluate (i) biofilm deformation during the absence of permeation (i.e., relaxation) and (ii) biofilm resistance to detachment forces (i.e., air scouring). The in-situ monitoring investigation using Optical Coherence Tomography (OCT) revealed that the biofilms developed on MF and UF membrane presented a rigid structure in absence of filtration forces, limiting the application of relaxation and biofilm expansion necessary for cleaning. Moreover, under shear stress conditions, a higher reduction in biofilm thickness was observed for MF (-60%, from 84 to 34 µm) compared to UF (-30%, from 64 to 45 µm), leading to an increase of permeate flux (+60%, from 9.1 to 14.9 L/m2/h and +20 % from 7.8 to 9.5 L/m2/h, respectively). The rheometric analysis indicated that the biofilm developed on MF membrane had weaker mechanical strength, displaying lower storage modulus (-50 %) and lower loss modulus (-55 %) compared to UF. These differences in mechanical properties were linked to the lower concentration of polyvalent ions and the distribution of organic foulants (i.e., BB, LMW-N) found in the biofilm on the MF membrane. Moreover, in the presence of air scouring led to a slight difference in microbial community between UF and MF. Our findings provide valuable insight for future investigations aimed at engineer biofilm composition to optimize biofilm control strategies in membrane systems for seawater desalination pretreatment.
Collapse
Affiliation(s)
- Luigi Ranieri
- Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rebecca Esposito
- Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Suzana P Nunes
- Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Chemistry Program and Chemical Engineering Program, Physical Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia; Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Johannes S Vrouwenvelder
- Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luca Fortunato
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; MANN+HUMMEL Water & Fluid Solutions S.p.A., Italy.
| |
Collapse
|
4
|
Improved quantitative evaluation of the fouling potential in spacer-filled membrane filtration channels through a biofouling index based on the relative pressure drop. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Stoffel D, Derlon N, Traber J, Staaks C, Heijnen M, Morgenroth E, Jacquin C. Gravity-driven membrane filtration with compact second-life modules daily backwashed: An alternative to conventional ultrafiltration for centralized facilities. WATER RESEARCH X 2023; 18:100178. [PMID: 37250288 PMCID: PMC10214304 DOI: 10.1016/j.wroa.2023.100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gravity-driven membrane (GDM) filtration is a strategic alternative to conventional ultrafiltration (UF) for the resilient production of drinking water via ultrafiltration when resources become scarce, given the low dependency on energy and chemicals, and longer membrane lifetime. Implementation at large scale requires the use of compact and low-cost membrane modules with high biopolymer removal capacity. We therefore evaluated (1) to what extent stable flux can be obtained with compact membrane modules, i.e., inside-out hollow fiber membranes, and frequent gravity-driven backwash, (2) whether we can reduce membrane expenses by effectively utilizing second-life UF modules, i.e., modules that have been discarded by treatment plant operators because they are no longer under warranty, (3) if biopolymer removal could be maintained when applying a frequent backwash and with second-life modules and (4) which GDM filtration scenarios are economically viable compared to conventional UF, when considering the influence of new or second-life modules, membrane lifetime, stable flux value and energy pricing. Our findings showed that it was possible to maintain stable fluxes around 10 L/m2/h with both new and second-life modules for 142 days, but a daily gravity-driven backwash was necessary and sufficient to compensate the continuous flux drop observed with compact modules. In addition, the backwash did not affect the biopolymer removal. Costs calculations revealed two significant findings: (1) using second-life modules made GDM filtration membrane investment less expensive than conventional UF, despite the higher module requirements for GDM filtration and (2) overall costs of GDM filtration with a gravity-driven backwash were unaffected by energy prices rise, while conventional UF costs rose significantly. The later increased the number of economically viable GDM filtration scenarios, including scenarios with new modules. In summary, we proposed an approach that could make GDM filtration in centralized facilities feasible and increase the range of UF operating conditions to better adapt to increasing environmental and societal constraints.
Collapse
Affiliation(s)
- Deborah Stoffel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | | | | | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - Céline Jacquin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
6
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Hube S, Lee S, Chong TH, Brynjólfsson S, Wu B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155248. [PMID: 35427614 DOI: 10.1016/j.scitotenv.2022.155248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; Department of Environmental Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
8
|
Bilad MR, Junaeda SR, Khery Y, Nufida BA, Shamsuddin N, Usman A, Violet V. Compaction of a Polymeric Membrane in Ultra-Low-Pressure Water Filtration. Polymers (Basel) 2022; 14:polym14163254. [PMID: 36015511 PMCID: PMC9416213 DOI: 10.3390/polym14163254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced sustainability due to lower energy input, almost no use of chemicals, and minimum operational expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane (GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in the traditional pressure-driven system operating at high transmembrane pressures (ΔPs > 200 kPa), but it is less documented in ultra-low-pressure systems (ΔP < 10 kPa). A simple GDM filtration setup operated under a constant-pressure system was employed to investigate the compaction phenomena in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure stepping test was performed to investigate the occurrence of instantaneous compaction in the ΔP range of 1−10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic was assessed under alternating high and low ΔP and relaxation in between the filtrations. The findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend in clean water permeability at higher ΔPs (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ΔPs of 1 and 10 kPa, respectively). We also found that the intrinsic permeability of the applied polymeric membrane was significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50% loss due to compaction. The compaction was mainly instantaneous, which occurred when the ΔP was changed, whereas only minor changes in permeability occurred over time when operating at a constant ΔP. The compaction was highly reversible and could be restored (i.e., decompaction) through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction could be detected by operating alternating filtrations under ΔPs of 1 and 10 kPa. The overall findings are essential to support emerging GDM filtration applications, in which membrane compaction has been ignored and confounded with membrane fouling. The role of compaction is more prominent for high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction occurred simultaneously.
Collapse
Affiliation(s)
- Muhammad Roil Bilad
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence:
| | - Siti Rahma Junaeda
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Yusran Khery
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Baiq Asma Nufida
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | - Violet Violet
- Faculty of Forestry, Lambung Mangkurat University, Jl. A. Yani KM. 36, Banjarbaru 70714, Indonesia
| |
Collapse
|
9
|
Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. MEMBRANES 2022; 12:membranes12030267. [PMID: 35323741 PMCID: PMC8948695 DOI: 10.3390/membranes12030267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
Abstract
Water supply and water treatment are of major concern all around the world. In this respect, membrane processes are increasingly used and reported for a large range of applications. Desalination processes by membranes are well-established technologies with many desalination plants implemented in coastal areas. Natural water treatment is also well implemented to provide purified water for growing population. This review covers various aspects of desalination: membranes and modules, plants, fouling (scaling, biofouling, algal blooms), cleaning, pretreatment (conventional and membrane treatments), energy and environmental issues, renewable energies, boron removal and brine disposal. Treatment of natural water focuses on removal of natural organic matter, arsenic, iron, nitrate, fluoride, pesticides and herbicides, pharmaceutical and personal care products. This review underlines that desalination and natural water treatment require identical knowledge of membrane fouling, construction of large plants, cleaning procedures, energy and environmental issues, and that these two different fields can learn from each other.
Collapse
|
10
|
Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration. WATER 2022. [DOI: 10.3390/w14020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gravity-driven membrane (GDM) filtration technology has been extensively in the employed drinking water treatment, however, the effect filtration mode (i.e., dead-end mode vs. cross-flow mode) on its long-term performance has not been systematically investigated. In this study, pilot-scale GDM systems were operated using two submerged filtration mode (SGDM) and cross-flow mode (CGDM) at the gravity-driven pressures 120 mbar and 200 mbar, respectively. The results showed that flux stabilization was observed both in the SGDM and CGDM during long-term filtration, and importantly the stabilized flux level of CGDM was elevated by 3.5–67.5%, which indicated that the filtration mode would not influence the occurrence of flux stability, but significantly improve the stable flux level. Interestingly, the stable flux level was not significantly improved with the increase of driven pressure, and the optimized driven pressure was 120 mbar. In addition, the GDM process conferred effective removals of turbidity, UV254, CODMn, and DOC, with average removals of 99%, 43%, 41%, and 20%, respectively. With the assistance of cross flow to avert the overaccumulation of contaminants on the membrane surface, CGDM process exhibited even higher removal efficiency than SGDM process. Furthermore, it can be found that the CGDM system can effectively remove the fluorescent protein-like substances, and the intensities of tryptophans substance and soluble microbial products were reduced by 64.61% and 55.08%, respectively, higher than that of the SGDM. Therefore, it can be determined that the filtration mode played an important role in the flux stabilization of GDM system during long-term filtration, and the cross-flow filtration mode can simultaneously improve the stabilized flux level and removal performance.
Collapse
|