1
|
Elozeiri AAE, Dykstra JE, Lammertink RGH, Rijnaarts HHM. Current Direction Regulates Ion Transport Across Layer-by-Layer One-Side-Coated Ion-Exchange Membranes in Electrodialysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22004-22013. [PMID: 40159084 PMCID: PMC11986911 DOI: 10.1021/acsami.5c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte multilayer (PEM) modified membranes can attain selective ion separations in electrodialysis with several potential applications, such as sustainable brine management. To understand the ion transport across PEM-coated membranes, we coated six different commercial cation-exchange membranes (CEMs) with PEM via the layer-by-layer technique. Coating one side of the membrane with a PEM leads to an asymmetric current-voltage response in case of solutions containing Mg2+ and Ca2+ ions. When the coating faces the counterion transport direction (FT), the coated membrane reaches a limiting current density which does not occur if the applied current is reversed. We investigated these phenomena via several electrochemical techniques. After coating, the total membrane resistance increases significantly at solutions of Mg2+ or Ca2+ (relative to the bare membrane resistance). Furthermore, the transport characteristics of the PEM coating are highly influenced by the base membrane resistance and fixed-charge density. Regarding the counterion type, the resistance of the coated membrane increases in the same order as the bare membrane: K+ < Na+< Ca2+ < Mg2+. The higher the bare membrane resistance is, the higher the PEM resistance is. The co-ion valency (i.e., monovalent Cl- or divalent SO42-) had limited to insignificant effects on the current-voltage response of the coated membranes. Therefore, dielectric exclusion is insignificant for these coated membranes at the tested concentrations, i.e., 0.25 M SO42-. Lastly, we employed an ion transport model to explain the observed effect of the current direction on the current-voltage response and analyze the effective properties of the PEM coating.
Collapse
Affiliation(s)
- Alaaeldin A. E. Elozeiri
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Rob G. H. Lammertink
- Membrane
Science and Technology, Faculty of Science and Technology (TNW), University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Huub H. M. Rijnaarts
- Environmental
Technology, Wageningen University &
Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
2
|
Maegawa K, Okamoto H, Hikima K, Kawamura G, Nagai A, Matsuda A. Bottom-up synthesis of ion-pair-bridged metal-organic framework for H + conduction. Chem Commun (Camb) 2024; 60:6925-6928. [PMID: 38884166 DOI: 10.1039/d4cc01706d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a novel conceptual synthesis of a metal-organic framework (MOF)-based proton conductor, UiO-66 based on a pyridinedicarboxylic acid phosphate (PyDC-PA) ion pair linker has been developed, in which the phosphoric acid is fixed to the N donor moiety of pyridine via an ionic bond.
Collapse
Affiliation(s)
- Keiichiro Maegawa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
- Next-Generation Energy Systems group, Centre of Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, Warsaw 01-919, Poland
| | - Hayata Okamoto
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Kazuhiro Hikima
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Atsushi Nagai
- Next-Generation Energy Systems group, Centre of Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, Warsaw 01-919, Poland
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
3
|
Wang C, Wang L, Yu H, Seo A, Wang Z, Rajabzadeh S, Ni BJ, Shon HK. Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration. CHEMOSPHERE 2024; 350:140999. [PMID: 38151066 DOI: 10.1016/j.chemosphere.2023.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/.
Collapse
Affiliation(s)
- Chen Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Li Wang
- CSIRO Space and Astronomy, PO Box 1130, Bentley, WA, 6102, Australia
| | - Hanwei Yu
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Allan Seo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Saeid Rajabzadeh
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia.
| |
Collapse
|
4
|
Bóna Á, Galambos I, Nemestóthy N. Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. MEMBRANES 2023; 13:368. [PMID: 37103795 PMCID: PMC10146247 DOI: 10.3390/membranes13040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The increasing demand for nanofiltration processes in drinking water treatment, industrial separation and wastewater treatment processes has highlighted several shortcomings of current state-of-the-art thin film composite (TFC NF) membranes, including limitations in chemical resistance, fouling resistance and selectivity. Polyelectrolyte multilayer (PEM) membranes provide a viable, industrially applicable alternative, providing significant improvements in these limitations. Laboratory experiments using artificial feedwaters have demonstrated selectivity an order of magnitude higher than polyamide NF, significantly higher fouling resistance and excellent chemical resistance (e.g., 200,000 ppmh chlorine resistance and stability over the 0-14 pH range). This review provides a brief overview of the various parameters that can be modified during the layer-by-layer procedure to determine and fine-tune the properties of the resulting NF membrane. The different parameters that can be adjusted during the layer-by-layer process are presented, which are used to optimize the properties of the resulting nanofiltration membrane. Substantial progress in PEM membrane development is presented, particularly selectivity improvements, of which the most promising route seems to be asymmetric PEM NF membranes, offering a breakthrough in active layer thickness and organic/salt selectivity: an average of 98% micropollutant rejection coupled with a NaCl rejection below 15%. Advantages for wastewater treatment are highlighted, including high selectivity, fouling resistance, chemical stability and a wide range of cleaning methods. Additionally, disadvantages of the current PEM NF membranes are also outlined; while these may impede their use in some industrial wastewater applications, they are largely not restrictive. The effect of realistic feeds (wastewaters and challenging surface waters) on PEM NF membrane performance is also presented: pilot studies conducted for up to 12 months show stable rejection values and no significant irreversible fouling. We close our review by identifying research areas where further studies are needed to facilitate the adoption of this notable technology.
Collapse
Affiliation(s)
- Áron Bóna
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Ildikó Galambos
- Soós Ernő Research and Development Center, University of Pannonia, Vár u. 8., H-8800 Nagykanizsa, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10., H-8200 Veszprém, Hungary
| |
Collapse
|
5
|
Recent Advanced Development of Acid-Resistant Thin-Film Composite Nanofiltration Membrane Preparation and Separation Performance in Acidic Environments. SEPARATIONS 2022. [DOI: 10.3390/separations10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Membrane filtration technology has attracted extensive attention in academia and industry due to its advantages of eco-friendliness related to environmental protection and high efficiency. Polyamide thin-film composite nanofiltration (PA TFC NF) membranes have been widely used due to their high separation performance. Non-acid-resistant PA TFC NF membranes face tremendous challenges in an acidic environment. Novel and relatively acid-resistant polysulfonamide-based and triazine-based TFC NF membranes have been developed, but these have a serious trade-off in terms of permeability and selectivity. Hence, how to improve acid resistance of TFC NF membranes and their separation performance in acidic environments is a pivotal issue for the design and preparation of these membranes. This review first highlights current strategies for improving the acid resistance of PA TFC NF membranes by regulating the composition and structure of the separation layer of the membrane performed by manipulating and optimizing the construction method and then summarizes the separation performances of these acid-resistant TFC NF membranes in acidic environments, as studied in recent years.
Collapse
|
6
|
Polyelectrolyte-based nanofiltration membranes with exceptional performance in Mg2+/Li+ separation in a wide range of solution conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Jonkers WA, Cornelissen ER, de Grooth J, de Vos WM. Hollow fiber nanofiltration: From lab-scale research to full-scale applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|