1
|
Puhan MR, Sarkar P, R A, Nagendraprasad G, Reddy KA, Sutariya B, Karan S. Unraveling Anomalies in Preferential Liquid Transport through the Intrinsic Pores of Cyclodextrin in Polyester Nanofilms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404164. [PMID: 39091057 DOI: 10.1002/adma.202404164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked β-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the β-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.
Collapse
Affiliation(s)
- Manas Ranjan Puhan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pulak Sarkar
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Amal R
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Gunolla Nagendraprasad
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati, Andhra Pradesh, 517 619, India
| | - Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Xue S, Rong Y, Ding N, Zhao C, Sun Q, Li S, Pang S. Simultaneous Recognition and Separation of Organic Isomers Via Cooperative Control of Pore-Inside and Pore-Outside Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204963. [PMID: 36307904 PMCID: PMC9798982 DOI: 10.1002/advs.202204963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the desirability of organic isomer recognition and separation, current strategies are expensive and complicated. Here, a simple strategy for simultaneously recognizing and separating organic isomers using pillararene-based charge-transfer cocrystals through the cooperative control of pore-inside and pore-outside intermolecular interactions is presented. This strategy is illustrated using 1-bromobutane (1-BBU), which is often produced as an isomeric mixture with 2-bromobutane (2-BBU). According to its structure, perethylated pillar[5]arene (EtP5) and 3,5-dinitrobenzonitrile (DNB) are strategically chosen as a donor and an acceptor. As a result, their cocrystal exhibited stronger pore-inside interactions and much weaker pore-outside interactions with 1-BBU than with 2-BBU. Consequently, nearly 100% 1-BBU selectivity is achieved in two-component mixtures, even in those containing trace 1-BBU (1%), whereas free EtP5 only achieved 89.80% selectivity. The preference for linear bromoalkanes is retained in 1-bromopentane/3-bromopentane and 1-bromohexane/2-bromohexane mixtures, demonstrating the generality of this strategy. Selective adsorption of linear bromoalkanes induced a naked-eye-detectable color change from red to white. Moreover, the cocrystal are used over multiple cycles without losing selectivity.
Collapse
Affiliation(s)
- Shaomin Xue
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yujia Rong
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ning Ding
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Chaofeng Zhao
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Qi Sun
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shenghua Li
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Yangtze Delta Region AcademyBeijing Institute of TechnologyJiaxing314019P. R. China
| | - Siping Pang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
3
|
Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
He QP, Wang YY, Wang PF, Dou XM. Preparation of modified MFI-type/PDMS composite membranes for the separation of dichlorobenzene isomers via pervaporation. RSC Adv 2022; 12:16131-16140. [PMID: 35733675 PMCID: PMC9150433 DOI: 10.1039/d2ra01950g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Zeolite-polymer composite membranes have become promising and effective materials for the pervaporative separation of liquids, especially for isomeric mixtures. In this paper, silicalite-1/PDMS composite membranes have been used to investigate the separation of dichlorobenzene (DCB) isomers via pervaporation for the first time. Silicalite-1 zeolites modified by the silane coupling agent, NH3-C3H6-Si(OC2H5)3, have been incorporated into polydimethylsiloxane (PDMS). Then, the silicalite-1/PDMS composite membranes have been successfully prepared on porous polyvinylidene fluoride (PVDF) supports. The morphology and structure of the silicalite-1 zeolites and silicalite-1/PDMS composite membranes have been characterized by XRD, FTIR, SEM and BET techniques. The results show that the modified silicalite-1 zeolite particles have smaller pore sizes dispersed more uniformly in the active layers of the silicalite-1/PDMS composite membranes and present fewer aggregation and pinholes formed by the accumulation of zeolite particles. The silicalite-1/PDMS composite membranes are all dense and continuous with good homogeneity. To evaluate the pervaporative separation performance of the DCB isomers, the unmodified and modified silicalite-1/PDMS composite membranes have been further tested in single-isomer and binary-isomer systems at 60 °C. The modified silicalite-1/PDMS composite membranes present higher DCB isomer separation factors. The separation factors of the modified silicalite-1/PDMS composite membranes in the binary-isomer systems for p-/o-DCB and p-/m-DCB are 3.53 and 5.63, respectively. The permeate flux of p-DCB through the modified silicalite-1/PDMS composite membranes in the p-/o-DCB binary-isomer system is 116.7 g m-2 h-1 and in the p-/m-DCB binary-isomer system, it is 93.5 g m-2 h-1. The result provides a new approach towards the pervaporative separation of DCB isomers from their mixture for future industrialization applications.
Collapse
Affiliation(s)
- Qiu-Ping He
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
| | - Ying-Ying Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Peng-Fei Wang
- Shanghai Luqiang New Materials Co., Ltd Shanghai 200062 China +86-21-69577696
- State Key Laboratory of Polyolefin Catalytic Technology and High Performance Material, Shanghai Research Institute of Chemical Industry Co., Ltd Shanghai 200062 China
| | - Xiao-Ming Dou
- Institute of Photonics & Bio-medicine, School of Science, East China University of Science and Technology Shanghai 200062 China
| |
Collapse
|
5
|
Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|