1
|
Feilizadeh M, Kochaki SH, Estahbanati MRK, Kiendrebeogo M, Drogui P. Combining nanofiltration and electrooxidation for complete removal of nanoplastics from water. MARINE POLLUTION BULLETIN 2025; 213:117621. [PMID: 39892060 DOI: 10.1016/j.marpolbul.2025.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Nanoplastics (NPs) have emerged as significant water contaminants, attracting increasing attention due to their potential impacts on aquatic ecosystems and human health. In addressing the environmental and health hazards posed by NPs in water, this new study explores a combined nanofiltration (NF) and electrooxidation (EO) approach. The proposed process begins with NF to concentrate the NPs in the water, followed by EO to degrade the NPs in the NF rejection. The results indicated that the employed NF system could completely eliminate NPs at different transmembrane pressures and times. The study also highlighted the influence of NP concentrations on recovery rates, showing a reduction in recovery at higher concentrations. Moreover, following the NF process, the EO process was examined for its efficiency in removing NPs over time and at various initial NP concentrations. The results revealed that the most effective durations were 20, 30, and 40 min for NP concentrations of 10, 22.5, and 35 mg/L, respectively. As a kinetic study, the rate of NPs degradation by the EO process was modeled using Langmuir-Hinshelwood (L-H) as well as power law models. The comparison between the models' predictions and the experimental data demonstrated that the power law and L-H models had good predictability for NP concentrations exceeding 10 mg/L and 2 mg/L, respectively. At concentrations below the 2 mg/L, deviations from the model were observed, likely due to changes in the reaction mechanism. It can be concluded from these results that, at low concentrations, the surface reactions were no longer the rate-determining step.
Collapse
Affiliation(s)
- Mehrzad Feilizadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Saeed Heidari Kochaki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - M R Karimi Estahbanati
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Marthe Kiendrebeogo
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Patrick Drogui
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada.
| |
Collapse
|
2
|
Thompson S, Gutierrez AM, Bukowski J, Bhattacharyya D. Microfiltration Membrane Pore Functionalization with Primary and Quaternary Amines for PFAS Remediation: Capture, Regeneration, and Reuse. Molecules 2024; 29:4229. [PMID: 39275076 PMCID: PMC11397369 DOI: 10.3390/molecules29174229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still a burden to the environment. A selective anion-exchange membrane capable of capture and controlled release could further concentrate necessary contaminants, making their eventual degradation or long-term storage easier. To this end, commercial microfiltration membranes were modified using pore functionalization to incorporate an anion-exchange moiety within the membrane matrix. This functionalization was performed with primary and quaternary amine-containing polymer networks ranging from weak to strong basic residues. Membrane loading ranged from 0.22 to 0.85 mmol/g membrane and 0.97 to 3.4 mmol/g membrane for quaternary and primary functionalization, respectively. Modified membranes exhibited a range of water permeances within approximately 45-131 LMH/bar. The removal of PFASs from aqueous streams was analyzed for both "long-chain" and "short-chain" analytes, perfluorooctanoic acid and perfluorobutyric acid, respectively. Synthesized membranes demonstrated as high as 90% rejection of perfluorooctanoic acid and 50-80% rejection of perfluorobutyric acid after 30% permeate recovery. Regenerated membranes maintained the capture performance for three cycles of continuous operation. The efficiency of capture and reuse can be improved through the consideration of charge density, water flux, and influent contaminant concentration. This process is not limited by the substrate and, thus, is able to be implemented on other platforms. This research advances a versatile membrane platform for environmentally relevant applications that seek to help increase the global availability of safe drinking water.
Collapse
Affiliation(s)
- Sam Thompson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Angela M Gutierrez
- Sustainability and Analytical Equipment Facility, University of Kentucky, Lexington, KY 40506, USA
| | - Jennifer Bukowski
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
4
|
Xu W, Li G, Qu H, Ma C, Zhang H, Cheng J, Li H. The Specific Removal of Perfluorooctanoic Acid Based on Pillar[5]arene-Polymer-Packed Nanochannel Membrane. ACS NANO 2023; 17:19305-19312. [PMID: 37768005 DOI: 10.1021/acsnano.3c06448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The conspicuous surface activity and exceptional chemical stability of perfluorooctanoic acid, commonly referred to as PFOA, have led to its extensive utilization across a broad spectrum of industrial and commercial products. Nonetheless, significant concerns have arisen regarding the environmental presence of PFOAs, driven by their recognized persistence, bioaccumulative nature, and potential human health risks. In the realm of sustainable agriculture, a pivotal challenge revolves around the development of specialized materials capable of effectively and selectively eliminating PFOA from the environment. This study proposes harnessing the exceptional properties of a pillar[5]arene polymer to construct a nanochannel membrane filled with tryptophan-alanine dipeptide pillar[5]arene polymer. Through the functionalization of these nanochannel membranes, we achieved a PFOA removal rate of 0.01 mmol L-1 min-1, surpassing the rates observed with other control chemicals by a factor of 4.5-15. The research on PFOA removal materials has been boosted because of the creation of this highly selective PFOA removal membrane.
Collapse
Affiliation(s)
- Weiwei Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haonan Qu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cuiguang Ma
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haifan Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
5
|
Wan H, Islam MS, Tarannum T, Shi K, Mills R, Yi Z, Fang F, Lei L, Li S, Ormsbee L, Xu Z, Bhattacharyya D. Reactive membranes for groundwater remediation of chlorinated aliphatic hydrocarbons: competitive dechlorination and cost aspects. Sep Purif Technol 2023; 320:123955. [PMID: 38303990 PMCID: PMC10830166 DOI: 10.1016/j.seppur.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A nanocomposite membrane incorporating reactive Pd-Fe nanoparticles (NPs) was developed to remediate chlorinated aliphatic hydrocarbons (CAHs) from groundwater. Other than recapturing the produced Fen+ for in-situ regeneration, the functionalized polyanions prevented NPs agglomeration and resulting in a spherical Fe0 core (55 nm, O/Fe = 0.05) and an oxidized shell (4 nm, O/Fe = 1.38). The reactive membranes degraded 92% of target CAHs with a residence time of 1.7 seconds. After long-term treatment and regeneration, reusability was confirmed through recovered reactivity, recurrence of Fe0 in X-ray photoelectron spectroscopy, and >96% remaining of Fe and Pd. The total cost (adjusted present value for 20 years) was estimated to be 13.9% lower than the granular activated carbon system, following an EPA work breakdown structure-based cost model. However, non-target CAHs from groundwater can compete for active sites, leading to decreased surface-area normalized dechlorination rate ( k sa ) by 28.2-79.9%. A hybrid nanofiltration (NF)/reactive membrane was proposed to selectively intercept larger competitors, leading to 54% increased dechlorination efficiency and 1.3 to 1.9-fold enlarged k sa . Overall, the practical viability of the developed reactive membranes was demonstrated by the stability, reusability, and cost advantages, while the optional NF strategy could alleviate competitive degradation towards complex water chemistry.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Tahiya Tarannum
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Ke Shi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhiyuan Yi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fumohan Fang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linfeng Lei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyao Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
6
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Dou W, Qi F, Li Y, Wei F, Hu Q, Yao Z, Wang J, Zhang L, Tang Z. Charge-biased nanofibrous membranes with uniform charge distribution and hemocompatibility for enhanced selective adsorption of endotoxin from plasma. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Lei X, Lian Q, Zhang X, Wang T, Gee M, Holmes W, Jin S, Ponnusamy SK, Gang DD, Zappi ME. Removal of perfluorooctanoic acid via polyethyleneimine modified graphene oxide: Effects of water matrices and understanding mechanisms. CHEMOSPHERE 2022; 308:136379. [PMID: 36088978 DOI: 10.1016/j.chemosphere.2022.136379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This research aimed to evaluate the adsorption behaviors and mechanisms of perfluorooctanoic acid (PFOA) onto polyethyleneimine modified graphene oxide (GO-PEI) from aqueous solutions. The adsorption capacity was significantly improved by doping polyethyleneimine (PEI) onto graphene oxide (GO). The Brunauer-Emmett-Teller (BET) isotherm model was considered as the best isotherm model in describing the PFOA adsorption onto GO-PEI3 (wPEI/wGO = 3). GO-PEI3 exhibited high adsorption capacity (qe = 368.2 mg/g, calculated from BET isotherm model) and excellent stability. The maximum monolayer amount of PFOA adsorption onto GO-PEI3 (qm = 231.2 mg/g) was successfully evaluated. The calculated saturated concentration (Cs = 169.9 mg/L) of PFOA on GO-PEI3 closely agrees with its critical micelle concentration (CMC = 157.0 mg/L), suggesting the formation of multilayer hemi-micelles or micelles PFOA structures on the surface of GO-PEI3. PFOA adsorption onto GO-PEI3 was inhibited by several factors including: the presence of humic acid (HA) by competing with the adsorption sites, background salts through the double-layer compression effect, and the competition from soluble ions for the amine or amide functional groups on GO-PEI3. Finally, both the FT-IR and XPS results confirmed that the adsorption of PFOA onto GO-PEI3 was through electrostatic attraction and hydrophobic interaction (physical adsorption), but not chemical adsorption. This work provides fundamental knowledge both in understanding the adsorption behavior through the BET isotherm model and in developing a stable adsorbent for PFOA adsorption. In addition, the findings highlight the potential of PFOA remediation from wastewater systems using GO-PEI in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, Shangyuancun, Beijing, 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Nanyang Vocational College of Agriculture, Nanyang, 473000, PR China
| | - Michael Gee
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Department of Engineering, University of California, Berkeley, CA, 94720, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu, India
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| |
Collapse
|
9
|
Bilad MR, Junaeda SR, Khery Y, Nufida BA, Shamsuddin N, Usman A, Violet V. Compaction of a Polymeric Membrane in Ultra-Low-Pressure Water Filtration. Polymers (Basel) 2022; 14:polym14163254. [PMID: 36015511 PMCID: PMC9416213 DOI: 10.3390/polym14163254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced sustainability due to lower energy input, almost no use of chemicals, and minimum operational expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane (GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in the traditional pressure-driven system operating at high transmembrane pressures (ΔPs > 200 kPa), but it is less documented in ultra-low-pressure systems (ΔP < 10 kPa). A simple GDM filtration setup operated under a constant-pressure system was employed to investigate the compaction phenomena in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure stepping test was performed to investigate the occurrence of instantaneous compaction in the ΔP range of 1−10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic was assessed under alternating high and low ΔP and relaxation in between the filtrations. The findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend in clean water permeability at higher ΔPs (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ΔPs of 1 and 10 kPa, respectively). We also found that the intrinsic permeability of the applied polymeric membrane was significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50% loss due to compaction. The compaction was mainly instantaneous, which occurred when the ΔP was changed, whereas only minor changes in permeability occurred over time when operating at a constant ΔP. The compaction was highly reversible and could be restored (i.e., decompaction) through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction could be detected by operating alternating filtrations under ΔPs of 1 and 10 kPa. The overall findings are essential to support emerging GDM filtration applications, in which membrane compaction has been ignored and confounded with membrane fouling. The role of compaction is more prominent for high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction occurred simultaneously.
Collapse
Affiliation(s)
- Muhammad Roil Bilad
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence:
| | - Siti Rahma Junaeda
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Yusran Khery
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Baiq Asma Nufida
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | - Violet Violet
- Faculty of Forestry, Lambung Mangkurat University, Jl. A. Yani KM. 36, Banjarbaru 70714, Indonesia
| |
Collapse
|