1
|
Zhang S, Luo Y, Yu D, Gao T, Bai W, Guan X, Wu W, Wang S. Semi-interpenetrating polybenzimidazole membrane containing polymeric ionic liquid with high power density and enhanced proton conductivity for fuel cells. J Colloid Interface Sci 2025; 681:344-355. [PMID: 39612666 DOI: 10.1016/j.jcis.2024.11.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
In phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes designed for high-temperature proton exchange membranes (HT-PEMs), increasing the PA doping is essential. Yet, excessive PA doping causes a decline in mechanical strength, which in turn affects the cell performance. We utilize a strategy that integrates elevated PA absorption, increased mechanical strength, and enhanced PA retention. An azide-type ionic liquid (IL) containing double bonds was synthesized and crosslinked with PBI via free radical polymerization reaction. In addition, the IL can also self-polymerize to form long-chain polymeric ionic liquid (PIL). Together, the two structures together form a semi-interpenetrating polymer network (sIPN) system, which has good mechanical properties. The synthesized alkaline ionic liquid can absorb and retain a large amount of PA through acid-base interactions and inter-ionic interactions. Consequently, the proton conductivity of the amino-type polybenzimidazole (AmPBI)-polymeric ionic liquid (PIL)-30 (where 30 stands for the wt% of IL) membrane in an anhydrous environment at 180 °C reached 138.2 mS cm-1. After PA retention test at 160 °C/0 % relative humidity (RH) for 240 h, the proton conductivity reached 99.4 mS cm-1 at 180 °C. The AmPBI-PIL-10 membrane exhibited a significant power density of 635.4 mW cm-2 at 160 °C. The AmPBI-PIL-X composite membranes exhibited exceptional performance.
Collapse
Affiliation(s)
- Shuyu Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yu Luo
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Di Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Tongtong Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Wenyu Bai
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xianfeng Guan
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Wanzhen Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Shuang Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China; Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China.
| |
Collapse
|
2
|
Xu Z, Chen N, Huang S, Wang S, Han D, Xiao M, Meng Y. Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells. Molecules 2024; 29:4480. [PMID: 39339475 PMCID: PMC11434161 DOI: 10.3390/molecules29184480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have become one of the important development directions of PEMFCs because of their outstanding features, including fast reaction kinetics, high tolerance against impurities in fuel, and easy heat and water management. The proton exchange membrane (PEM), as the core component of HT-PEMFCs, plays the most critical role in the performance of fuel cells. Phosphoric acid (PA)-doped membranes have showed satisfied proton conductivity at high-temperature and anhydrous conditions, and significant advancements have been achieved in the design and development of HT-PEMFCs based on PA-doped membranes. However, the persistent issue of HT-PEMFCs caused by PA leaching remains a challenge that cannot be ignored. This paper provides a concise overview of the proton conduction mechanism in HT-PEMs and the underlying causes of PA leaching in HT-PEMFCs and highlights the strategies aimed at mitigating PA leaching, such as designing crosslinked structures, incorporation of hygroscopic nanoparticles, improving the alkalinity of polymers, covalently linking acidic groups, preparation of multilayer membranes, constructing microporous structures, and formation of micro-phase separation. This review will offer a guidance for further research and development of HT-PEMFCs with high performance and longevity.
Collapse
Affiliation(s)
- Zhongming Xu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Nanjie Chen
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
- Institute of Chemistry, Henan Provincial Academy of Sciences, Zhengzhou 450000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhang Y, Han S, Zhu S, Chen R, Li T, Lyu Z, Zhao M, Gu M, Shao M, Xia Y. Slowly Removing Surface Ligand by Aging Enhances the Stability of Pd Nanosheets toward Electron Beam Irradiation and Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202314634. [PMID: 37955915 DOI: 10.1002/anie.202314634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Surface ligands play an important role in shape-controlled growth and stabilization of colloidal nanocrystals. Their quick removal tends to cause structural deformation and/or aggregation to the nanocrystals. Herein, we demonstrate that the surface ligand based on poly(vinylpyrrolidone) (PVP) can be slowly removed from Pd nanosheets (NSs, 0.93±0.17 nm in thickness) by simply aging the colloidal suspension. The aged Pd NSs show well-preserved morphology, together with significantly enhanced stability toward both e-beam irradiation and electrocatalysis (e.g., ethanol oxidation). It is revealed that the slow desorption of PVP during aging forces the re-exposed Pd atoms to reorganize, facilitating the surface to transform from being nearly perfect to defect-rich. The resultant Pd NSs with abundant defects no longer rely on surface ligand to stabilize the atomic arrangement and thus show excellent structural and electrochemical stability. This work provides a facile and effective method to maintain the integrity of colloidal nanocrystals by slowly removing the surface ligand.
Collapse
Affiliation(s)
- Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 30332, Atlanta, GA, USA
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Shaobo Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 30332, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 30332, Atlanta, GA, USA
| |
Collapse
|
4
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
5
|
Rohani R, Pakizeh M, Chenar MP. Toluene/water separation using MCM-41/ PEBA mixed matrix membrane via pervaporation process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Li W, Chen C, Liu X, Li X, Jiang X, Liu X, Yang J, Liu J. Continuous graphene oxide nanolayer arranged on hydrophilic modified polytetrafluoroethylene substrate to construct high performance proton exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Wei G, Liang Y, Wang Y, Liu X, Wang L. Achieving high power density of 859.5 mW cm−2: Self-cross-linking polymer membrane based on rigid fluorenone structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Oroujzadeh M, Mehdipour‐Ataei S. Evaluation of properties and performance of poly(ether sulfone ketone) membranes in proton exchange membrane fuel cells. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maryam Oroujzadeh
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahram Mehdipour‐Ataei
- Faculty of Polymer Science, Department of Polyurethane and Advanced Materials Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
9
|
Li W, Wang H, Zhang J, Xiang Y, Lu S. Advancements of Polyvinylpyrrolidone-Based Polymer Electrolyte Membranes for Electrochemical Energy Conversion and Storage Devices. CHEMSUSCHEM 2022; 15:e202200071. [PMID: 35318798 DOI: 10.1002/cssc.202200071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Polymer electrolyte membranes (PEMs) play vital roles in electrochemical energy conversion and storage devices, such as polymer electrolyte membrane fuel cell (PEMFC), redox flow battery, and water electrolysis. As the crucial component of these devices, PEMs need to possess high ion conductivity and electronic insulation, remarkable mechanical and chemical stability, and outstanding isolation function for the materials on both sides of the cathode and anode. Polyvinylpyrrolidone has received widespread attention in the research of PEMs owing to its tertiary amine basic groups and exceptional hydrophilic properties. This review focuses on the application status of polyvinylpyrrolidone-based PEMs in PEMFC, vanadium redox flow battery, and alkaline water electrolysis, and describes in detail the key scientific problems in these fields, providing constructive suggestions and guidance for the application of polyvinylpyrrolidone-based PEMs in electrochemical energy conversion and storage devices.
Collapse
Affiliation(s)
- Wen Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|