1
|
Fu W, Liu Z, Li D, Pan B. Chemistry for water treatment under nanoconfinement. WATER RESEARCH 2025; 275:123173. [PMID: 39864357 DOI: 10.1016/j.watres.2025.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment. This Review focuses on recent advancements and employment of nanoconfinement effects in various water treatment processes, emphasizing the fundamental chemistry underlying nanoconfinement effects. Also, the existing knowledge gaps related to nanoconfinement effects and future prospects for expanding their applications in diverse water treatment scenarios are discussed.
Collapse
Affiliation(s)
- Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ziyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zeng Y, Zhang Z, Zhan X, Hong B, Wang X, Xia Y. Durable fluorinated cobalt oxyhydroxide/calcium alginate hydrogels for activating peroxymonosulfate to enable nearly 100% degradation of ciprofloxacin. RSC Adv 2024; 14:34938-34947. [PMID: 39493550 PMCID: PMC11528419 DOI: 10.1039/d4ra06321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Peroxymonosulfate (PMS) activation by solid catalysts for ciprofloxacin (CIP) removal is a promising method for decontaminating wastewater. However, mainstream catalysts suffer from efficiency and durability issues due to mechanical fragility and structural instability. Here, we have developed a durable calcium alginate hydrogel encapsulating fluorinated cobalt oxyhydroxide (FCO/CAH), fabricated by a simple hydrogen-bond-assisted cross-linking reaction, to enhance PMS activation for complete CIP removal. The optimized 2-FCO/CAH could generate abundant singlet oxygen (1O2) and sulfate radicals (SO4˙-) with PMS, resulting in 0.433 min-1 kinetic constant and approximately 100% CIP degradation within 10 minutes. This exceptional degradation efficiency is due to the even distribution of 2-FCO, which maximizes catalytic sites for PMS activation, and the multichannel cavity structure of CAH, which effectively enriches both PMS and CIP. Furthermore, the durability of 2-FCO/CAH was proved by its negligible decay in CIP removal efficiency (∼100%) and good microstructure retention after 6 consecutive cycles, facilitated by a stable surface reconstructed interphase on the 2-FCO surface and the strong mechanical property of 2-FCO/CAH. Our work showcases a facile approach to constructing durable hydrogel catalysts that improve PMS-mediated antibiotic degradation.
Collapse
Affiliation(s)
- Yunxiong Zeng
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University Hangzhou 310018 People's Republic of China
| | - Zhilong Zhang
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University Hangzhou 310018 People's Republic of China
| | - Xingyu Zhan
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University Hangzhou 310018 People's Republic of China
| | - Bo Hong
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University Hangzhou 310018 People's Republic of China
| | - Xinqing Wang
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University Hangzhou 310018 People's Republic of China
| | - Yingchun Xia
- Department of Chemical Engineering, Tsinghua University Beijing 100084 People's Republic of China
- Hefei Institute for Public Safety Research, Tsinghua University Hefei 230601 People's Republic of China
| |
Collapse
|
3
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
4
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
5
|
Chakachaka VM, Tshangana CS, Mamba BB, Muleja AA. CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment. MEMBRANES 2023; 13:827. [PMID: 37887999 PMCID: PMC10608198 DOI: 10.3390/membranes13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
An integrated photocatalytic membrane system (IPMS) was developed for potential use in the remediation of naproxen using real water samples from a drinking water treatment plant. Key parameters such as time, pH, water matrix, mixing speeds, flow rate, and light intensity undeniably affected photocatalytic and membrane separation processes. The system optimization was based on improving irradiation to generate a more reactive species and mass transfer to increase the reaction rate. Upon optimization, IPMS achieved 99% naproxen removal efficiency. Computational fluid dynamics (CFD) simulated the flow patterns and radiation distribution inside the photocatalytic membrane reactor to improve irradiation and mass transfer during operation. The simulated flow field revealed the presence of dead zones with different velocities in the photocatalytic membrane reactor; this limited the mass transfer of reactive species in the reactor, resulting in uneven distribution of reactive radicals. The dead zones were mitigated by increasing the mixing speed, and as a result, convective mass flow improved process performance. The governing parameters (flow patterns and radiation distribution) of the simulated and experimental data were in agreement. The absorption of irradiation by the active site of the membranes improved with light intensity; at higher light intensities, the light irradiated deeper into the membrane. As such, the CoFe2O4 nanoparticles incorporated inside the membrane pores became highly activated, thus enhancing degradation. The obtained space-time yield (STY) (1.23 × 1011 mol/cm2.s) and photocatalytic space-time yield (PSTY) (4.39 × 1011 mol/W.s) showed that the developed IPMS was efficient regarding energy intensiveness and throughput for treatment of pollutants in water.
Collapse
Affiliation(s)
| | | | | | - Adolph Anga Muleja
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| |
Collapse
|
6
|
Huang Y, Guan Z, Li Q, Li Q, Xia D. Preparation, performance and mechanism of metal oxide modified catalytic ceramic membranes for wastewater treatment. RSC Adv 2023; 13:17436-17448. [PMID: 37313519 PMCID: PMC10258605 DOI: 10.1039/d3ra01291c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Catalytic ceramic membranes (CMs) integrated with different metal oxides were designed and fabricated by an impregnation-sintering method. The characterization results indicated that the metal oxides (Co3O4, MnO2, Fe2O3 and CuO) were uniformly anchored around the Al2O3 particles of the membrane basal materials, which could provide a large number of active sites throughout the membrane for the activation of peroxymonosulfate (PMS). The performance of the CMs/PMS system was evaluated by filtrating a phenol solution under different operating conditions. All the four catalytic CMs showed desirable phenol removal efficiency and the performance was in order of CoCM, MnCM, FeCM and CuCM. Moreover, the low metal ion leaching and high catalytic activity even after the 6th run revealed the good stability and reusability of the catalytic CMs. Quenching experiments and electron paramagnetic resonance (EPR) measurements were conducted to discuss the mechanism of PMS activation in the CMs/PMS system. The reactive oxygen species (ROS) were supposed to be SO4˙- and 1O2 in the CoCM/PMS system, 1O2 and O2˙- in the MnCM/PMS system, SO4˙- and ·OH in the FeCM/PMS system, and SO4˙- in the CuCM/PMS system, respectively. The comparative study on the performance and mechanism of the four CMs provides a better understanding of the integrated PMS-CMs behaviors.
Collapse
Affiliation(s)
- Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qian Li
- China Three Gorges Corporation Wuhan 430014 China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| |
Collapse
|
7
|
Wang T, Bachs ES, de Grooth J, de Vos WM. Advanced Oxidation Processes Coupled to Nanofiltration Membranes with Catalytic Fe 0 Nanoparticles in Symmetric and Asymmetric Polyelectrolyte Multilayers. MEMBRANES 2023; 13:388. [PMID: 37103815 PMCID: PMC10141899 DOI: 10.3390/membranes13040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The in situ synthesis of Fe0 particles using poly-(acrylic acid) (PAA) is an effective tool for fabricating catalytic membranes relevant to advanced oxidation processes (AOPs). Through their synthesis in polyelectrolyte multilayer-based nanofiltration membranes, it becomes possible to reject and degrade organic micropollutants simultaneously. In this work, we compare two approaches, where Fe0 nanoparticles are synthesized in or on symmetric multilayers and asymmetric multilayers. For the membrane with symmetric multilayers (4.0 bilayers of poly (diallyldimethylammonium chloride) (PDADMAC)/PAA), the in situ synthesized Fe0 increased its permeability from 1.77 L/m2/h/bar to 17.67 L/m2/h/bar when three Fe2+ binding/reducing cycles were conducted. Likely, the low chemical stability of this polyelectrolyte multilayer allows it to become damaged through the relatively harsh synthesis. However, when the in situ synthesis of Fe0 was performed on top of asymmetric multilayers, which consist of 7.0 bilayers of the very chemically stable combination of PDADMAC and poly(styrene sulfonate) (PSS), coated with PDADMAC/PAA multilayers, the negative effect of the Fe0 in situ synthesized can be mitigated, and the permeability only increased from 1.96 L/m2/h/bar to 2.38 L/m2/h/bar with three Fe2+ binding/reducing cycles. The obtained membranes with asymmetric polyelectrolyte multilayers exhibited an excellent naproxen treatment efficiency, with over 80% naproxen rejection on the permeate side and 25% naproxen removal on the feed solution side after 1 h. This work demonstrates the potential of especially asymmetric polyelectrolyte multilayers to be effectively combined with AOPs for the treatment of micropollutants (MPs).
Collapse
Affiliation(s)
| | | | | | - Wiebe M. de Vos
- MESA+ Institute of Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Koo IK, Lim PT, Chen X, Goh K. How solute-membrane interaction influences foulant formation in polymeric catalytic membrane: competitive and sequential reactions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Chakachaka V, Mahlangu O, Tshangana C, Mamba B, Muleja A. Highly adhesive CoFe2O4 nanoengineered PES membranes for salts and Naproxen removal and antimicrobial activities. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Ly QV, Cui L, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang Z. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review ✰. WATER RESEARCH 2023; 230:119577. [PMID: 36638735 DOI: 10.1016/j.watres.2023.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Quang Viet Ly
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Lele Cui
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Waris Khan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Chakachaka V, Tshangana C, Mahlangu O, Mamba B, Muleja A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. MEMBRANES 2022; 12:membranes12080745. [PMID: 36005662 PMCID: PMC9412706 DOI: 10.3390/membranes12080745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023]
Abstract
Photocatalytic membrane reactors (PMRs) are a promising technology for wastewater reclamation. The principles of PMRs are based on photocatalytic degradation and membrane rejection, the different processes occurring simultaneously. Coupled photocatalysis and membrane filtration has made PMRs suitable for application in the removal of emerging contaminants (ECs), such as diclofenac, carbamazepine, ibuprofen, lincomycin, diphenhydramine, rhodamine, and tamoxifen, from wastewater, while reducing the likelihood of byproducts being present in the permeate stream. The viability of PMRs depends on the hypotheses used during design and the kinetic properties of the systems. The choice of design models and the assumptions made in their application can have an impact on reactor design outcomes. A design’s resilience is due to the development of a mathematical model that links material and mass balances to various sub-models, including the fluid dynamic model, the radiation emission model, the radiation absorption model, and the kinetic model. Hence, this review addresses the discrepancies with traditional kinetic models, fluid flow dynamics, and radiation emission and absorption, all of which have an impact on upscaling and reactor design. Computational and analytical descriptions of how to develop a PMR system with high throughput, performance, and energy efficiency are provided. The potential solutions are classified according to the catalyst, fluid dynamics, thickness, geometry, and light source used. Two main PMR types are comprehensively described, and a discussion of various influential factors relating to PMRs was used as a premise for developing an ideal reactor. The aim of this work was to resolve potential divergences that occur during PMRs design as most real reactors do not conform to the idealized fluid dynamics. Lastly, the application of PMRs is evaluated, not only in relation to the removal of endocrine-disrupting compounds (EDCs) from wastewater, but also in dye, oil, heavy metals, and pesticide removal.
Collapse
|