1
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402335. [PMID: 39676484 PMCID: PMC11795731 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Chunchun Ye
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Liyuan Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Manoj K. Sugumar
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Yan Zhao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Neil B. McKeown
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Serena Margadonna
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| |
Collapse
|
2
|
Koukoufilippou D, Liakos IL, Pilatos GI, Plakantonaki N, Banis A, Kanellopoulos NK. Separation of Magnesium and Lithium Ions Utilizing Layer-by-Layer Polyelectrolyte Modification of Polyacrylonitrile Hollow Fiber Porous Membranes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5878. [PMID: 39685314 DOI: 10.3390/ma17235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This study explores the layer-by-layer (LBL) modification of polyacrylonitrile (PAN) hollow fibers for effective Mg2+/Li+ separation. It employs an LBL method of surface modification using polyelectrolytes, specifically aiming to enhance ion selectivity and improve the efficiency of lithium extraction from brines or lithium battery wastes, which is critical for battery recycling and other industrial applications. The modification process involves coating the hydrolyzed PAN fibers with alternating layers of positively charged polyelectrolytes, such as poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), or poly(diallyldimethylammonium chloride) (PDADMAC) and negatively charged polyelectrolytes, such as poly(styrene sulfonate) (PSS), to form polyelectrolyte multilayers (PEMs). This study evaluates the modified membranes in Mg2+ and Li+ salt solutions, demonstrating significant improvements in selectivity for Mg2+/Li+ separation. PAH was identified as the optimal positively charged polyelectrolyte. PAN hollow fibers modified with ten bilayers of PAH/PSS achieved rejection rates of 95.4% for Mg2+ ions and 34.8% for Li+ ions, and a permeance of 0.39 LMH/bar. This highlights the potential of LBL techniques for effectively addressing the challenges of ion separation across a variety of applications.
Collapse
Affiliation(s)
- Danai Koukoufilippou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - Ioannis L Liakos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - George I Pilatos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - Niki Plakantonaki
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - Alexandros Banis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
| | - Nikolaos K Kanellopoulos
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Patr. Gregoriou E & 27 Neapoleos Street, 15341 Agia Paraskevi, Greece
- High Technology Filters (HTF) S.A., Siokou Street 18, 15341 Agia Paraskevi, Greece
| |
Collapse
|
3
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
4
|
Sha’rani SS, Nasef MM, Jusoh NWC, Isa EDM, Ali RR. A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2300697. [PMID: 38249722 PMCID: PMC10798294 DOI: 10.1080/14686996.2023.2300697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
A selective composite membrane for vanadium redox flow battery (VRFB) was successfully prepared by layer-by-layer (LbL) technique using a perfluorosulfonic sulfonic acid or Nafion 117 (N117). The composite membrane referred as N117-(PEI/GO)n, was obtained by depositing alternating layers of positively charged polyethylenimine (PEI) and negatively charged graphene oxide (GO) as polyelectrolytes. The physicochemical properties and performance of the pristine and composite membranes were investigated. The membrane showed an enhancement in proton conductivity and simultaneously exhibited a notable 90% reduction in vanadium permeability. This, in turn, results in a well-balanced ratio of proton conductivity to vanadium permeability, leading to high selectivity. The highest selectivity of the LbL membranes was found to be 19.2 × 104 S.min/cm3, which is 13 times higher than the N117 membrane (n = 0). This was translated into an improvement in the battery performance, with the n = 1 membrane showing a 4-6% improvement in coulombic efficiency and a 7-15% improvement in voltage efficiency at current densities ranging from 40 to 80 mA/cm2. Furthermore, the membrane displays stable operation over a long-term stability at around 88% at a current density of 40 mA/cm2, making it an attractive option for VRFB applications using the LbL technique. The use of PEI/GO bilayers maintains high proton conductivity and VE of the battery, opening up possibilities for further optimization and improvement of VRFBs.
Collapse
Affiliation(s)
- Saidatul Sophia Sha’rani
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Mohamed Mahmoud Nasef
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Roshafima Rasit Ali
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Manin A, Golubenko D, Novikova S, Yaroslavtsev A. Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties. MEMBRANES 2023; 13:624. [PMID: 37504990 PMCID: PMC10386577 DOI: 10.3390/membranes13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
The possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex® AM and pseudo-homogeneous Neosepta® AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid. The structures of the obtained hybrid membranes and separately synthesized cerium phosphate were investigated using FTIR, P31 MAS NMR, EDX mapping, and scanning electron microscopy. The modification increased the membrane selectivity to monovalent ions in the ED desalination of an equimolar mixture of NaCl and Na2SO4. The highest selectivities of Ralex® AM and Neosepta® AMX-based hybrid membranes were 4.9 and 7.7, respectively. In addition, the modification of Neosepta® membranes also increased the resistance to a typical anionic surfactant, sodium dodecylbenzenesulfonate.
Collapse
Affiliation(s)
- Andrey Manin
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| | - Svetlana Novikova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| |
Collapse
|
7
|
Tekinalp Ö, Zimmermann P, Holdcroft S, Burheim OS, Deng L. Cation Exchange Membranes and Process Optimizations in Electrodialysis for Selective Metal Separation: A Review. MEMBRANES 2023; 13:566. [PMID: 37367770 DOI: 10.3390/membranes13060566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
The selective separation of metal species from various sources is highly desirable in applications such as hydrometallurgy, water treatment, and energy production but also challenging. Monovalent cation exchange membranes (CEMs) show a great potential to selectively separate one metal ion over others of the same or different valences from various effluents in electrodialysis. Selectivity among metal cations is influenced by both the inherent properties of membranes and the design and operating conditions of the electrodialysis process. The research progress and recent advances in membrane development and the implication of the electrodialysis systems on counter-ion selectivity are extensively reviewed in this work, focusing on both structure-property relationships of CEM materials and influences of process conditions and mass transport characteristics of target ions. Key membrane properties, such as charge density, water uptake, and polymer morphology, and strategies for enhancing ion selectivity are discussed. The implications of the boundary layer at the membrane surface are elucidated, where differences in the mass transport of ions at interfaces can be exploited to manipulate the transport ratio of competing counter-ions. Based on the progress, possible future R&D directions are also proposed.
Collapse
Affiliation(s)
- Önder Tekinalp
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Pauline Zimmermann
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Odne Stokke Burheim
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
8
|
Sharma PP, Mohammed S, Aburabie J, Hashaikeh R. Valorization of Seawater Reverse Osmosis Brine by Monovalent Ion-Selective Membranes through Electrodialysis. MEMBRANES 2023; 13:562. [PMID: 37367766 DOI: 10.3390/membranes13060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This paper proposes the use of monovalent selective electrodialysis technology to concentrate the valuable sodium chloride (NaCl) component present in seawater reverse osmosis (SWRO) brine for direct utilization in the chlor-alkali industry. To enhance monovalent selectivity, a polyamide selective layer was fabricated on commercial ion exchange membranes (IEMs) through interfacial polymerization (IP) of piperazine (PIP) and 1,3,5-Benzenetricarbonyl chloride (TMC). The IP-modified IEMs were characterized using various techniques to investigate changes in chemical structure, morphology, and surface charge. Ion chromatography (IC) analysis showed that the divalent rejection rate was more than 90% for IP-modified IEMs, compared to less than 65% for commercial IEMs. Electrodialysis results demonstrated that the SWRO brine was successfully concentrated to 14.9 g/L NaCl at a power consumption rate of 3.041 kWh/kg, indicating the advantageous performance of the IP-modified IEMs. Overall, the proposed monovalent selective electrodialysis technology using IP-modified IEMs has the potential to provide a sustainable solution for the direct utilization of NaCl in the chlor-alkali industry.
Collapse
Affiliation(s)
- Prem P Sharma
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
9
|
DuChanois RM, Mazurowski L, Fan H, Verduzco R, Nir O, Elimelech M. Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6331-6341. [PMID: 37023347 DOI: 10.1021/acs.est.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Lauren Mazurowski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Ionic liquid-based pore-filling anion-exchange membranes enable fast large-sized metallic anion migration in electrodialysis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Gorobchenko AD, Gil VV, Nikonenko VV, Sharafan MV. Mathematical Modeling of the Selective Transport of Singly Charged Ions Through Multilayer Composite Ion-Exchange Membrane during Electrodialysis. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s251775162206004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The deposition of several alternating anion- and cation-exchange surface layers (layer-by-layer method) is a promising technique for the modification of ion-exchange membranes, which makes it possible to essentially increase their selectivity to singly charged ions. This paper presents a one-dimensional model, which is based on the Nernst–Planck–Poisson equations and describes the competitive transfer of singly and doubly charged ions through a multilayer composite ion-exchange membrane. It has been revealed for the first time that, as in the earlier studied case of a bilayer membrane, the dependence of the specific permselectivity coefficient (P1/2) of a multilayer membrane on the electrical current density passes through a maximum $$\left( {P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}} \right).$$ It has been shown that an increase in the number of nanosized modification bilayers n leads to the growth of $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }},$$ but the flux of a preferably transferred ion decreases in this case. It has been established that $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$ is attained at underlimiting current densities and relatively low potential drop. The simulated dependences $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$(n) qualitatively agree with the known literature experimental and theoretical results.
Collapse
|
12
|
Guo S, Du J, Yan F, Wang Z, Wang J. Fabrication of anti-fouling polyamide nanofiltration membrane by incorporating streptomycin as a novel co-monomer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Tang C, Yaroshchuk A, Bruening ML. Ion Separations Based on Spontaneously Arising Streaming Potentials in Rotating Isoporous Membranes. MEMBRANES 2022; 12:membranes12060631. [PMID: 35736338 PMCID: PMC9227078 DOI: 10.3390/membranes12060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Highly selective ion separations are vital for producing pure salts, and membrane-based separations are promising alternatives to conventional ion-separation techniques. Our previous work demonstrated that simple pressure-driven flow through negatively charged isoporous membranes can separate Li+ and K+ with selectivities as high as 70 in dilute solutions. The separation mechanism relies on spontaneously arising streaming potentials that induce electromigration, which opposes advection and separates cations based on differences in their electrophoretic mobilities. Although the separation technique is simple, this work shows that high selectivities are possible only with careful consideration of experimental conditions including transmembrane pressure, solution ionic strength, the K+/Li+ ratio in the feed, and the extent of concentration polarization. Separations conducted with a rotating membrane show Li+/K+ selectivities as high as 150 with a 1000 rpm membrane rotation rate, but the selectivity decreases to 1.3 at 95 rpm. These results demonstrate the benefits and necessity of quantitative control of concentration polarization in highly selective separations. Increases in solution ionic strength or the K+/Li+ feed ratio can also decrease selectivities more than an order of magnitude.
Collapse
Affiliation(s)
- Chao Tang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656, USA;
| | - Andriy Yaroshchuk
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain;
- Polytechnic University of Catalonia, Av. Diagonal 647, 08028 Barcelona, Spain
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656, USA;
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence:
| |
Collapse
|
14
|
A strategy to avoid solid formation within the reactor during magnesium and calcium electrolytic removal from lithium-rich brines. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|