1
|
Jiang M, Huang J, Li P, Ataa B, Gu J, Wu Z, Qiao W. Optimization of membrane filtration and cleaning strategy in a high solid thermophilic AnMBR treating food waste. CHEMOSPHERE 2023; 342:140151. [PMID: 37714478 DOI: 10.1016/j.chemosphere.2023.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Anaerobic membrane bioreactor is advantageous over traditional processes for food waste treatment, i.e. short retention time, high loading rate, and particulate clean permeate. However, establishing a sustainable membrane filtration is a long-standing challenge because of its high viscosity and solids concentration characteristics. Therefore, this study investigated the changes in the membrane permeability before and after the cleaning during a 130-day thermophilic anaerobic experiment. Results show that the AnMBR system could maintain high stability even under a short HRT of 10 days and OLR of 9.0 kg-COD/(m3·d) with low volatile fatty acid of 50 mg/L. The membrane filtration deteriorates with the concurrence of a sharp increase of viscosity when the volatile solids reached 23 g/L. A critical flux was achieved at 5.5 L/(m2·h) under optimized operation conditions, membrane filtration/relaxing ratio with less than 4:1 at a hydraulic retention time of 15 d. Membrane fouling can be removed by soaking the membrane in NaClO (1 g/L, 15 h) and citric acid (2 g/L, 2 h). Conclusively, this work provides insight to establish the operation strategy for a thermophilic AnMBR treating food waste.
Collapse
Affiliation(s)
- Mengmeng Jiang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jiu Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Peng Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Bridget Ataa
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Jinheng Gu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhiyue Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; Sanya Institute, China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
2
|
Ye M, Li Q, Li YY. Evaluation of anaerobic membrane bioreactor treating dairy processing wastewater: Elemental flow, bioenergy production and reduction of CO 2 emission. BIORESOURCE TECHNOLOGY 2023; 385:129342. [PMID: 37348569 DOI: 10.1016/j.biortech.2023.129342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
The management of dairy processing wastewater (DPW) must address water pollution while delivering renewable energy and recovering resources. A high-rate anaerobic membrane bioreactor (AnMBR) was investigated for treating DPW, and the system was evaluated in terms of elemental flow, nutrient recovery, energy balance, and reduction of CO2 emission. The AnMBR system was superior in terms of both methanogenic performance and efficiency of bioenergy recovery in the DPW treatment, with a high net energy potential of 51.4-53.2 kWh/m3. The theoretical economic values of the digestate (13.8 $/m3) and permeate (4.1 $/m3) were assessed according to nutrient transformation and price of mineral fertilizer. The total CO2 emission equivalent in the AnMBR was 44.7 kg CO2-eq/m3, with a significant reduction of 54.1 kg CO2-eq/m3 compared to the conventional process. The application of the AnMBR in the DPW treatment is a promising approach for the development of carbon neutrality and a circular economy.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qian Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
3
|
Ye M, Li YY. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161447. [PMID: 36621500 DOI: 10.1016/j.scitotenv.2023.161447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Methanogenic treatment can effectively manage wastewater in the dairy industry. However, its treatment efficiency and stability are problematic due to the feature of wastewater. This review comprehensively summarizes the dairy wastewater characteristics and reveals the mechanisms and impacts of three critical issues in anaerobic treatment, including ammonia and long-chain fatty acid (LCFA) inhibition and trace metal (TM) deficiency. It evaluates current remedial strategies and the implementation of anaerobic membrane bioreactor (AnMBR) technology. It assesses the use of nitrogen-removed effluent return to dilute the influent for solving protein-rich dairy wastewater treatment. It explores the methodology of TM addition to dairy wastewater in accordance with microbial TM content and proliferation. It analyzes the multiple benefits of applying high-solid AnMBR to lipid-rich influent to mitigate LCFA inhibition. Finally, it proposes a promising low-carbon treatment system with enhanced bioenergy recovery, nitrogen removal, and simultaneous phosphorus recovery that could promote carbon neutrality for dairy industry wastewater treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
4
|
A Recent Progress in the Leachate Pretreatment Methods Coupled with Anaerobic Digestion for Enhanced Biogas Production: Feasibility, Trends, and Techno-Economic Evaluation. Int J Mol Sci 2023; 24:ijms24010763. [PMID: 36614205 PMCID: PMC9820962 DOI: 10.3390/ijms24010763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Landfill leachate (LFL) treatment is a severe challenge due to its highly viscous nature and various complex pollutants. Leachate comprises various toxic pollutants, including inorganic macro/nano components, xenobiotics, dissolved organic matter, heavy metals, and microorganisms responsible for severe environmental pollution. Various treatment procedures are available to achieve better effluent quality levels; however, most of these treatments are nondestructive, so pollutants are merely transported from one phase to another, resulting in secondary contamination. Anaerobic digestion is a promising bioconversion technology for treating leachate while producing renewable, cleaner energy. Because of its high toxicity and low biodegradability, biological approaches necessitate employing other techniques to complement and support the primary process. In this regard, pretreatment technologies have recently attracted researchers' interest in addressing leachate treatment concerns through anaerobic digestion. This review summarizes various LFL pretreatment methods, such as electrochemical, ultrasonic, alkaline, coagulation, nanofiltration, air stripping, adsorption, and photocatalysis, before the anaerobic digestion of leachate. The pretreatment could assist in converting biogas (carbon dioxide to methane) and residual volatile fatty acids to valuable chemicals and fuels and even straight to power generation. However, the selection of pretreatment is a vital step. The techno-economic analysis also suggested the high economic feasibility of integrated-anaerobic digestion. Therefore, with the incorporation of pretreatment and anaerobic digestion, the process could have high economic viability attributed to bioenergy production and cost savings through sustainable leachate management options.
Collapse
|
5
|
Yin DM, Uwineza C, Sapmaz T, Mahboubi A, De Wever H, Qiao W, Taherzadeh MJ. Volatile Fatty Acids (VFA) Production and Recovery from Chicken Manure Using a High-Solid Anaerobic Membrane Bioreactor (AnMBR). MEMBRANES 2022; 12:1133. [PMID: 36422125 PMCID: PMC9693206 DOI: 10.3390/membranes12111133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Acidogenic fermentation of chicken manure (CM) for production and recovery of volatile fatty acids (VFA) is an interesting biological waste-to-value approach compared to benchmark organic waste management strategies. Considering the wide range of high value applications of VFA, a semi-continuous immersed anaerobic membrane bioreactor (AnMBR) was applied to boost VFA productivity and yield, while reducing downstream processing stages assisting the recovery of VFA. In this regard, the effect of parameters such as pH and organic loading rates (OLR) on the overall bioconversion and filtration performance was investigated. Thermal-shocked CM was applied both as inoculum and substrate. A very high VFA yield (0.90 g-VFA/g-VS) was obtained in the treatment with no pH control (~8.2) at an OLR of 2 g-VS/(L·d), presenting 24% higher yield compared to that of the controlled pH. Batch assays further demonstrated the enhanced hydrolysis and acidogenesis activities at weak alkaline conditions. A long-term (78 days) fermentation and filtration was successfully performed, where stable membrane filtration performance was experienced for about 50 days under high-solid (suspended solid of 37-45 g/L) and high flux (20 L/(m2·h)) conditions. Results suggest that AnMBR of CM is a feasible and promising process for VFA production and recovery.
Collapse
Affiliation(s)
- Dong Min Yin
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
- Biomass Engineering Center, College of Engineering, China Agricultural University, Beijing 100083, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Tugba Sapmaz
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Heleen De Wever
- Flemish Institute for Technological Research, VITO NV, Boeretang 200, B-2400 Mol, Belgium
| | - Wei Qiao
- Biomass Engineering Center, College of Engineering, China Agricultural University, Beijing 100083, China
| | | |
Collapse
|
6
|
Guo G, Li Y, Zhou S, Chen Y, Urasaki K, Qin Y, Kubota K, Li YY. Long term operation performance and membrane fouling mechanisms of anaerobic membrane bioreactor treating waste activated sludge at high solid concentration and high flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157435. [PMID: 35863570 DOI: 10.1016/j.scitotenv.2022.157435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
High solid anaerobic membrane bioreactor (HSAnMBR) is widely applied in biomass treatment and energy regeneration, while membrane operation performance and membrane fouling control remain critical issues. In this study, a HSAnMBR was utilized for waste activated sludge (WAS) treatment at organic loading rates of 3.69-3.72 gCOD/L·d and biogas yield was ranged in 0.38-0.39 L/gVSfed with the COD conversion efficiency of 40 %. The membrane operated stably when the average flux was 9.6, 4.5 and 1.2 L/m2/h at mixed liquor total solid of 25, 30 and 40 g/L with a filtration: relaxation of 4:1, 1:1 and 1:2, respectively. The distinctive characteristics of membrane fouling at high solid condition were that the polysaccharides and proteins had high fouling propensity and were the main composition of the foulant layer. Furthermore, phosphorus and magnesium were the predominant causes of inorganic fouling. The minerals precipitated on the membrane and were embedded into membrane pores, contributing to cake layer formation and pore blocking. This research provided a comprehensive analysis of the membrane operation characterization and fouling mechanisms of HSAnMBR, which was expected to push forward HSAnMBR applications to WAS treatment.
Collapse
Affiliation(s)
- Guangze Guo
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shitong Zhou
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Vatanpour V, Ağtaş M, Abdelrahman AM, Erşahin ME, Ozgun H, Koyuncu I. Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials. CHEMOSPHERE 2022; 302:134930. [PMID: 35568222 DOI: 10.1016/j.chemosphere.2022.134930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The use of nanomaterials (NMs) in the fabrication and modification of membranes as well as the coupling of nanomaterial-based processes with membrane processes have been attracted many researchers today. The NMs due to a wide range of types, different chemistry, the possibility of various kinds of functionality, different properties like antibacterial activity, hydrophilicity, and large surface area were applied to enhance the membrane properties. In the membrane bioreactors (MBRs) as a highly successful process of membrane technology in wastewater treatment, the NMs have been applied for improving the efficiency of MBR process. This review assessed the application of NMs both as the modifiers of membrane and as the effective part of hybrid techniques with MBR system for wastewater treatment. The efficiency of NMs blended membranes in the MBR process has been reviewed in terms of antifouling and antibacterial improvement and removal performance of the pollutants. Novel kinds of NMs were recognized and discussed based on their properties and advantages. The NMs-based photocatalytic and electrochemical processes integrated with MBR were reviewed with their benefits and drawbacks. In addition, the effect of the presence of mobilized NPs in the sludge on MBR performance was surveyed. As a result of this review, it can be concluded that nanomaterials generally improve MBR performance. The high flux and antifouling properties can be obtained by adding nanomaterials with hydrophilic and antibacterial properties to the membrane, and further studies are required for photocatalytic NMs applications. In addition, this review shows that the low amounts of NMs in the membrane structure could have an effective influence on the MBR process. Besides, since many studies in the literature are carried out at the laboratory scale, it is thought that pilot and real-scale studies should be carried out to obtain more reliable data.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Meltem Ağtaş
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Amr Mustafa Abdelrahman
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Erşahin
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
8
|
Ye M, Sun B, Zhu A, Song L, Ha J, Qin Y, Li YY. Characterization of trace metal impact on organic acid metabolism and functional microbial community in treating dairy processing wastewater with thermophilic anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 359:127495. [PMID: 35718246 DOI: 10.1016/j.biortech.2022.127495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic digestion (AD) of dairy processing wastewater (DPW) to produce bioenergy is considered promising but also associated with the possibility of an unbalanced organic matter and trace metal (TM) content. In this study, the TM content and its impact on AD were determined in an anaerobic membrane bioreactor operated to treat DPW. The results indicated that a deficiency in TMs resulted in the slow deterioration of the process, reducing biogas production, disrupting the buffer system, and the massive accumulation of organic acid. The deficiency of Co/Ni was significant, while iron fluctuated due to microbial and chemical effects. Syntrophic propionate oxidizing bacteria and methanogen were the main groups suppressed under the TM deficient environment, resulting in AD failure. No inhibitory effect on the lactic acid metabolism was observed. Hence, supplying theoretical TM dosage to DPW was necessary to realize the efficient and stable AD process and robust microbial community.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Borchen Sun
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Liuying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Juntong Ha
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|