1
|
Nikonenko V, Uzdenova A, Kovalenko A, Urtenov M. Theoretical Study of the Influence of Electroconvection on the Efficiency of Pulsed Electric Field (PEF) Modes in ED Desalination. MEMBRANES 2024; 14:225. [PMID: 39590611 PMCID: PMC11596199 DOI: 10.3390/membranes14110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Pulsed electric field (PEF) modes of electrodialysis (ED) are known for their efficiency in mitigating the fouling of ion-exchange membranes. Many authors have also reported the possibility of increasing the mass transfer/desalination rate and reducing energy costs. In the literature, such possibilities were theoretically studied using 1D modeling, which, however, did not consider the effect of electroconvection. In this paper, the analysis of the ED desalination characteristics of PEF modes is carried out based on a 2D mathematical model including the Nernst-Planck-Poisson and Navier-Stokes equations. Three PEF modes are considered: galvanodynamic (pulses of constant electric current alternate with zero current pauses), potentiodynamic (pulses of constant voltage alternate with zero voltage pauses), and mixed galvanopotentiodynamic (pulses of constant voltage alternate with zero current pauses) modes. It is found that at overlimiting currents, in accordance with previous papers, in the range of relatively low frequencies, the mass transfer rate increases and the energy consumption decreases with increasing frequency. However, in the range of high frequencies, the tendency changes to the opposite. Thus, the best characteristics are obtained at a frequency close to 1 Hz. At higher frequencies, the pulse duration is too short, and electroconvective vortices, enhancing mass transfer, do not have time to develop.
Collapse
Affiliation(s)
- Victor Nikonenko
- Membrane Institute, Kuban State University, Stavropolskaya 149, Krasnodar 350040, Russia; (A.K.); (M.U.)
| | - Aminat Uzdenova
- Department of Computer Science and Computational Mathematics, Umar Aliev Karachai-Cherkess State University, Lenina 29, Karachaevsk 369200, Russia;
| | - Anna Kovalenko
- Membrane Institute, Kuban State University, Stavropolskaya 149, Krasnodar 350040, Russia; (A.K.); (M.U.)
| | - Makhamet Urtenov
- Membrane Institute, Kuban State University, Stavropolskaya 149, Krasnodar 350040, Russia; (A.K.); (M.U.)
| |
Collapse
|
2
|
Wang Q, Chun J, Subban CV. Influence of Concentration Gradients on Electroconvection at a Cation-Exchange Membrane Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1613-1622. [PMID: 38181224 DOI: 10.1021/acs.langmuir.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Membrane-based systems, such as electrodialysis, play an important role in desalination and industrial separation processes. Electrodialysis uses alternating anion- and cation-exchange membranes with a perpendicular electric field to generate concentrated and diluate streams from a feed solution. It is known that under overlimiting current conditions, reduced charge and mass transfer at the membrane interface leads to regions of high ion depletion generating instability and vortices termed electroconvection. While electroconvective mixing is known to directly impact the separation efficiency of electrodialysis, the influence of ion concentration gradients across the membrane experienced in a functional electrodialysis system is not known. Here, we report the influence of ion concentration gradients across a cation exchange membrane (Nafion) that is both aligned with and opposed to the applied electric field. Experiments were conducted by coflowing NaCl solutions of different concentrations (0.1-100 mM) on each side of the membrane, and electroconvection was visualized with a fluorescence dye (Rhodamine 6G). We obtained concentration profiles from fluorescence image data and systematically measured the thickness of the depletion boundary layer dBL under different conditions. We found smaller dBL values at a higher flow rate both with and without concentration gradients. Our results show that electroconvection is enhanced when the electric field is opposite to the direction of the concentration gradient.
Collapse
Affiliation(s)
- Qingpu Wang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chinmayee V Subban
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Pismenskaya N, Rybalkina O, Solonchenko K, Butylskii D, Nikonenko V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of Na xH (3-x)PO 4 Solutions with pH from 4.5 to 9.9. MEMBRANES 2023; 13:647. [PMID: 37505013 PMCID: PMC10386648 DOI: 10.3390/membranes13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Phosphate recovery from different second streams using electrodialysis (ED) is a promising step to a nutrients circular economy. However, the relatively low ED performance hinders the widespread adoption of this environmentally sound method. The formation of "bonded species" between phosphates and the weakly basic fixed groups (primary and secondary amines) of the anion exchange membrane can be the cause of decrease in current efficiency and increase in energy consumption. ED processing of NaxH(3-x)PO4 alkaline solutions and the use of intense current modes promote the formation of a bipolar junction from negatively charged bound species and positively charged fixed groups. This phenomenon causes a change in the shape of current-voltage curves, increase in resistance, and an enhancement in proton generation during long-term operation of anion-exchange membrane with weakly basic fixed groups. Shielding of primary and secondary amines with a modifier containing quaternary ammonium bases significantly improves ED performance in the recovery of phosphates from NaxH(3-x)PO4 solution with pH 4.5. Indeed, in the limiting and underlimiting current modes, 40% of phosphates are recovered 1.3 times faster, and energy consumption is reduced by 1.9 times in the case of the modified membrane compared to the pristine one. Studies were performed using a new commercial anion exchange membrane CJMA-2.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Dmitrii Butylskii
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
4
|
Pismenskaya N, Rybalkina O, Solonchenko K, Pasechnaya E, Sarapulova V, Wang Y, Jiang C, Xu T, Nikonenko V. How Chemical Nature of Fixed Groups of Anion-Exchange Membranes Affects the Performance of Electrodialysis of Phosphate-Containing Solutions? Polymers (Basel) 2023; 15:polym15102288. [PMID: 37242863 DOI: 10.3390/polym15102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Innovative ion exchange membranes have become commercially available in recent years. However, information about their structural and transport characteristics is often extremely insufficient. To address this issue, homogeneous anion exchange membranes with the trade names ASE, CJMA-3 and CJMA-6 have been investigated in NaxH(3-x)PO4 solutions with pH 4.4 ± 0.1, 6.6 and 10.0 ± 0.2, as well as NaCl solutions with pH 5.5 ± 0.1. Using IR spectroscopy and processing the concentration dependences of the electrical conductivity of these membranes in NaCl solutions, it was shown that ASE has a highly cross-linked aromatic matrix and mainly contains quaternary ammonium groups. Other membranes have a less cross-linked aliphatic matrix based on polyvinylidene fluoride (CJMA-3) or polyolefin (CJMA-6) and contain quaternary amines (CJMA-3) or a mixture of strongly basic (quaternary) and weakly basic (secondary) amines (CJMA-6). As expected, in dilute solutions of NaCl, the conductivity of membranes increases with an increase in their ion-exchange capacity: CJMA-6 < CJMA-3 << ASE. Weakly basic amines appear to form bound species with proton-containing phosphoric acid anions. This phenomenon causes a decrease in the electrical conductivity of CJMA-6 membranes compared to other studied membranes in phosphate-containing solutions. In addition, the formation of the neutral and negatively charged bound species suppresses the generation of protons by the "acid dissociation" mechanism. Moreover, when the membrane is operated in overlimiting current modes and/or in alkaline solutions, a bipolar junction is formed at the CJMA- 6/depleted solution interface. The CJMA-6 current-voltage curve becomes similar to the well-known curves for bipolar membranes, and water splitting intensifies in underlimiting and overlimiting modes. As a result, energy consumption for electrodialysis recovery of phosphates from aqueous solutions almost doubles when using the CJMA-6 membrane compared to the CJMA-3 membrane.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Evgeniia Pasechnaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Yaoming Wang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chenxiao Jiang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
5
|
Butylskii D, Troitskiy V, Chuprynina D, Kharchenko I, Ryzhkov I, Apel P, Pismenskaya N, Nikonenko V. Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes. MEMBRANES 2023; 13:membranes13050455. [PMID: 37233516 DOI: 10.3390/membranes13050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.
Collapse
Affiliation(s)
- Dmitrii Butylskii
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Vasiliy Troitskiy
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Ivan Kharchenko
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ilya Ryzhkov
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 79 Svobodny, 660041 Krasnoyarsk, Russia
| | - Pavel Apel
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
6
|
Pasechnaya E, Tsygurina K, Ponomar M, Chuprynina D, Nikonenko V, Pismenskaya N. Comparison of the Electrodialysis Performance in Tartrate Stabilization of a Red Wine Using Aliphatic and Aromatic Commercial and Modified Ion-Exchange Membranes. MEMBRANES 2023; 13:membranes13010084. [PMID: 36676891 PMCID: PMC9862077 DOI: 10.3390/membranes13010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/01/2023]
Abstract
The application of electrodialysis for tartrate stabilization and reagent-free acidity correction of wine and juices is attracting increasing interest. New aliphatic membranes CJMC-3 and CJMA-3 and aromatic membranes CSE and ASE were tested to determine their suitability for use in these electrodialysis processes and to evaluate the fouling of these membranes by wine components for a short (6-8 h) operating time. Using IR spectroscopy, optical indication and measurement of surface contact angles, the chemical composition of the studied membranes, as well as some details about their fouling by wine components, was clarified. The current-voltage charsacteristics, conductivity and water-splitting capacity of the membranes before and after electrodialysis were analyzed. We found that in the case of cation-exchange membranes, complexes of anthocyanins with metal ions penetrate into the bulk (CJMC-3) or are localized on the surface (CSE), depending on the degree of crosslinking of the polymer matrix. Adsorption of wine components by the surface of anion-exchange membranes CJMA-3 and ASE causes an increase in water splitting. Despite fouling under identical conditions of electrodialysis, membrane pair CJMC-3 and CJMA-3 provided 18 ± 1 tartrate recovery with 31 · 10-3 energy consumption, whereas CSE and ASE provided 20 ± 1% tartrate recovery with an energy consumption of 28 · 10-3 Wh, in addition to reducing the conductivity of wine by 20 ± 1%. The casting of aliphatic polyelectrolyte films on the surface of aromatic membranes reduces fouling with a relatively small increase in energy consumption and approximately the same degree of tartrate recovery compared to pristine CSE and ASE.
Collapse
Affiliation(s)
| | - Kseniia Tsygurina
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Maria Ponomar
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | |
Collapse
|
7
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Rybalkina OA, Solonchenko KV, Butylskii DY, Nikonenko VV, Pismenskaya ND. Effect of the Parameters of Pulsed Electric Fields on the Average Current Density in the Electrodialysis Desalination of a Phosphate-Containing Solution. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Tsygurina K, Pasechnaya E, Chuprynina D, Melkonyan K, Rusinova T, Nikonenko V, Pismenskaya N. Electrodialysis Tartrate Stabilization of Wine Materials: Fouling and a New Approach to the Cleaning of Aliphatic Anion-Exchange Membranes. MEMBRANES 2022; 12:1187. [PMID: 36557094 PMCID: PMC9785266 DOI: 10.3390/membranes12121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.
Collapse
Affiliation(s)
- Kseniia Tsygurina
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Karina Melkonyan
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Tatyana Rusinova
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | |
Collapse
|
10
|
Rybalkina O, Solonchenko K, Chuprynina D, Pismenskaya N, Nikonenko V. Effect of Pulsed Electric Field on the Electrodialysis Performance of Phosphate-Containing Solutions. MEMBRANES 2022; 12:1107. [PMID: 36363662 PMCID: PMC9693851 DOI: 10.3390/membranes12111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
A comparative analysis of mass transfer characteristics and energy consumption was carried out for the electrodialysis recovery of PV from of NaH2PO4 solutions and multicomponent (0.045 M NaxH(3-x)PO4, 0.02 M KCl, 0.045 M KOH, 0.028 M CaCl2, and 0.012 M MgCl2, pH 6.0 ± 0.1) solution in conventional continuous current (CC) and pulsed electric field (PEF) modes. The advantages of using PEF in comparison with CC mode are shown to increase the current efficiency and reduce energy consumption, as well as reduce scaling on heterogeneous anion-exchange membranes. It has been shown that PEF contributes to the suppression of the "acid dissociation" phenomenon, which is specific for anion-exchange membranes in phosphate-containing solutions. Pulse and pause lapse 0.1 s-0.1 s and duty cycle 1/2 were found to be optimal among the studied PEF parameters.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Analytical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Natalia Pismenskaya
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
11
|
Vasil’eva VI, Akberova EM, Saud AM, Zabolotsky VI. Current-Voltage Characteristics of Membranes with Different Cation-Exchanger Content in Mineral Salt-Neutral Amino Acid Solutions under Electrodialysis. MEMBRANES 2022; 12:1092. [PMID: 36363647 PMCID: PMC9698414 DOI: 10.3390/membranes12111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The features of the electrochemical behavior of experimental heterogeneous ion-exchange membranes with different mass fractions of sulfonated cation-exchange resin (from 45 to 65 wt%) have been studied by voltammetry during electrodialysis. Electromembrane systems with 0.01 M NaCl solution and with a mixed 0.01 M NaCl + 0.05 M phenylalanine (Phe) solution have been investigated. A significant influence of the ion-exchanger content on the parameters of current-voltage curves (CVCs) was established for the first time. Electrodialysis of the sodium chloride solution revealed a decrease in the length of the limiting current plateau and in the resistances of the second and third sections of the CVCs with an increase in the resin content in the membrane. The fact of the specific shape of the CVCs of all studied cation-exchange membrane samples in mixed solutions of the mineral salt and the amino acid was established. A specific feature of current-voltage curves is the presence of two plateaus of the limiting current and two values of the limiting current, respectively. This phenomenon in electromembrane systems with neutral amino acids has not been found before. The value of the first limiting current is determined by cations of the mineral salt, which are the main current carriers in the system. The presence of the second plateau and the corresponding second limiting current is due to the appearance of additional carriers due to the ability of phenylalanine as an organic ampholyte to participate in protolytic reactions. In the cation-exchange electromembrane system with the phenylalanine containing solution, two mechanisms of H+/OH- ion generation through water splitting and acid dissociation are shown. The possibility of the generation of H+/OH- ions at the enriched solution/cation-exchange membrane interface during electrodialysis of amino acid containing solutions is shown for the first time. The results of this study can be used to improve the process of electromembrane demineralization of neutral amino acid solutions by both targeted selection or the creation of new membranes and the selection of effective current operating modes.
Collapse
Affiliation(s)
- Vera I. Vasil’eva
- Department of Analytical Chemistry, Chemical Faculty, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Elmara M. Akberova
- Department of Analytical Chemistry, Chemical Faculty, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Ali M. Saud
- Faculty of Science, Tishreen University, Latakia 2237, Syria
| | - Victor I. Zabolotsky
- Department of Physical Chemistry, Faculty of Chemistry and High Technologies, Kuban State University, ul. Stavropolskaya 149, 350040 Krasnodar, Russia
| |
Collapse
|
12
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|