1
|
Yang Q, Zhang J, Zhang N, Wang D, Yuan X, Tang CY, Gao B, Wang Z. Impact of nanoplastics on membrane scaling and fouling in reverse osmosis desalination process. WATER RESEARCH 2024; 249:120945. [PMID: 38043352 DOI: 10.1016/j.watres.2023.120945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Nanoplastics (NPs) are a prevalent type of emerging pollutant in marine environment. However, their fouling behavior and impact on reverse osmosis (RO) membrane performance remain unexplored. We investigated the relationship between polystyrene (PS), one of the most abundant NPs, with silica scaling and humic acid (HA) fouling in RO. The results demonstrated that the surface potential of NPs played an important role in the combined scaling and fouling process. Compared with the negatively charged NPs (original PS and carboxyl group modified PS, PS-COOH), the amino-functionalized PS (PS-NH2) with positive surface charge significantly accelerated membrane scaling/fouling and induced a synergistic water flux decline, due to the strong electrostatic attraction between PS-NH2, foulants, and the membrane surface. The amino groups acted as binding sites, which promoted the heterogeneous nucleation of silica and adsorption of HA, then formed stable composite pollutants. Thermodynamic analysis via isothermal titration calorimetry (ITC) further confirmed the spontaneous formation of stable complexes between PS-NH2 and silicates/HA. Our study provides new insights into the combined NPs fouling with other scalants or foulants, and offers guidance for the accurate prediction of RO performance in the presence of NPs.
Collapse
Affiliation(s)
- Qinghao Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Chou PI, Ghim D, Gupta P, Singamaneni S, Lee B, Jun YS. Surface Functional Groups Affect Iron (Hydr)oxide Heterogeneous Nucleation: Implications for Membrane Scaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37467155 DOI: 10.1021/acs.est.3c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Because of its favorable thermodynamics and fast kinetics, heterogeneous solid nucleation on membranes triggers early-stage mineral scaling. Iron (hydr)oxide, a typical membrane scale, initially forms as nanoparticles that interact with surface functional groups on membranes, but these nanoscale phenomena are difficult to observe in real time. In this study, we utilized in situ grazing incidence small angle X-ray scattering and ex situ atomic force microscopy to examine the heterogeneous nucleation of iron (hydr)oxide on surface functional groups commonly used in membranes, including hydroxyl (OH), carboxyl (COOH), and fluoro (F) groups. We found that, compared to nucleation on hydrophilic OH- and COOH-surfaces, the high hydrophobicity of an F-modified surface significantly reduced the extents of both heterogeneously and homogeneously formed iron (hydr)oxide nucleation. Moreover, on the OH-surface, the high functional group density of 0.76 nmol/cm2 caused faster heterogeneous nucleation than that on a COOH-surface, with a density of 0.28 ± 0.04 nmol/cm2. The F-surface also had the highest heterogeneous nucleation energy barrier (26 ± 0.6 kJ/mol), followed by COOH- (23 ± 0.8 kJ/mol) and OH- (20 ± 0.9 kJ/mol) surfaces. The kinetic and thermodynamic information provided here will help us better predict the rates and extents of early-stage scaling of iron (hydr)oxide nanoparticles in membrane processes.
Collapse
Affiliation(s)
- Ping-I Chou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1180, St. Louis, Missouri 63130, United States
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1180, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, Campus Box 1185, St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, Campus Box 1185, St. Louis, Missouri 63130, United States
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1180, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Molecular engineering of a synergistic photocatalytic and photothermal membrane for highly efficient and durable solar water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Optimization of Polyacrylic Acid Coating on Graphene Oxide-Functionalized Reverse-Osmosis Membrane Using UV Radiation through Response Surface Methodology. Polymers (Basel) 2022; 14:polym14183711. [PMID: 36145856 PMCID: PMC9505122 DOI: 10.3390/polym14183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Reverse osmosis (RO) is affected by multiple types of fouling such as biofouling, scaling, and organic fouling. Therefore, a multi-functional membrane capable of reducing more than one type of fouling is a need of the hour. The polyacrylic acid and graphene oxide (PAA-GO) nanocomposite functionalization of the RO membrane has shown its effectiveness against both mineral scaling and biofouling. In this research, the polyacrylic acid concentration and irradiation times were optimized for the PAA-GO-coated RO membrane using the response surface methodology (RSM) approach. The effect of these parameters on pure water permeability and salt rejection was investigated. The models were developed through the design of the experiment (DoE), which were further validated through the analysis of variance (ANOVA). The optimum conditions were found to be: 11.41 mg·L−1 (acrylic acid concentration) and 28.08 min (UV activation times) with the predicted results of 2.12 LMH·bar−1 and 98.5% NaCl rejection. The optimized membrane was prepared as per the model conditions, which showed an increase in both pure water permeability and salt rejection as compared to the control. The improvement in membrane surface smoothness and hydrophilicity for the optimized membrane also helped to inhibit mineral scaling by 98%.
Collapse
|