1
|
Chen X, Shen Y, Du J, Chen D, Bao M, Li Y. Laminar Structured Cellulose/Graphene Membranes Constructed from Electrostatic Attraction for Efficient Emulsion Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411210. [PMID: 40195823 DOI: 10.1002/smll.202411210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Indexed: 04/09/2025]
Abstract
Improperly processed water-in-oil (W/O) emulsions from daily life and production negatively impact the environment. Membrane separation is particularly efficient among various W/O emulsion separation technologies. This study developed a hydrophobic oil-water separation membrane (CGZP) using electrostatic attraction between 1D micro-fibrillated cellulose (MFC) and 2D graphene oxide (GO) flakes. GO is modified with positively charged polyethyleneimine (PEI), and zinc hydroxide nanoparticles (Zn(OH)2 NPs) are in situ grown on GO (GZP) to enhance its positive charge and dispersibility. The modified positively charged GZP particles and negatively charged MFC formed a stable, uniform multilayer structure through electrostatic attraction. The CGZP membrane with the thickness of only 150 µm, exhibited a tensile strength of 178 kPa. The random stacking of MFC and GZP, along with the spacious gaps between GZP layers, provided sufficient channels for emulsion separation. The CGZP membranes demonstrated high separation permeability (W/O: 5000-18000 L m-2 h-1 bar-1) and efficiency (>99.5%) for various W/O emulsions stabilized by surfactants. Furthermore, this membrane displayed good recycling stability. This study presents a design strategy for cellulose/GO-based membranes with enhanced mechanical properties, offering an eco-friendly, cost-effective use of agricultural waste. The scalable method enables reliable oil-water purification and functional membrane applications in aqueous environments.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266061, P. R. China
| | - Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jie Du
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
2
|
Zhang T, Wang X, Dong Y, Li J, Yang XY. Effective separation of water-in-oil emulsions using an under-medium superlyophilic membrane with hierarchical pores. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133305. [PMID: 38141309 DOI: 10.1016/j.jhazmat.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. To address the challenges posed by the water-oil interface, superwetting materials have been designed to accomplish separation through filtration and adsorption. Superhydrophobic membranes prevent the permeation of water droplets owing to extreme repellence and their size-sieving abilities. However, their use in remediating water-contaminated oil is limited by high oil viscosities. Meanwhile, in-air superhydrophilic sorbents are rarely employed for the separation of water-in-oil emulsions due to the thermodynamic and kinetic limitations of water adsorption in oil. Herein, the integration of an under-medium superlyophilic membrane with the hierarchical porous structure of wood is presented for filtration-driven selective adsorption of water from surfactant-stabilized (10 g/L) water-in-oil emulsions. Compared to filtration through a natural wood membrane or direct adsorption using an under-oil superhydrophilic wood membrane, the under-medium superlyophilic wood membrane demonstrated high separation efficiencies of > 99.95% even when applied to the regeneration of high-viscosity lubricating (6.3 mPa s) and edible (50.5 mPa s) oils, exhibiting viscosity-dependent fluxes and excellent stability. Moreover, the cost of purifying 200 mL of lubricating oil using the modified wood membrane was much lower than the oil's market price and required a low energy consumption of ca. 1.72 kWh. ENVIRONMENTAL IMPLICATION: The ever-growing use of petroleum and industrial/domestic oil products has led to excessive (estimated at a million tons per year) output of waste oils. Because direct discharge of waste oils into the environment causes serious pollution problems, separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. Here filtration-driven water adsorption has been demonstrated to be a feasible method for the remediation of water-contaminated waste oils, even those that are highly viscous.
Collapse
Affiliation(s)
- Tianyue Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Xuejiao Wang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
3
|
Li Y, Jia M, Shi B, Wang S, Luan X, Hao Z, Wang Y. Robust and flexible polyester fiber membrane with under-liquid dual superlyophobicity for efficient on-demand oil-water separation. Int J Biol Macromol 2024; 262:130138. [PMID: 38354930 DOI: 10.1016/j.ijbiomac.2024.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Functional materials with under-liquid dual superlyophobicity have generated a great deal of concern from researchers due to their switchable separation ability oil-water mixtures and emulsions. Conceptually, under-liquid dual superlyophobicity is a Cassie state achievable under-liquid through the synergy of an under-liquid double lyophobic surface and the construction of a highly rough surface. However, obtaining an under-liquid dual superlyophobic surface remains difficult due to its thermodynamic contradiction and complex surface composition. Herein, we successfully prepared a functional coating by modifying the mixture of cellulose nanocrystals (CNCs) and nano-TiO2 with perfluorooctanoic acid (PFOA) via a simple method, then obtained a polyester fiber membrane with under-liquid dual superlyophobicity by roll coating method. The surface wettability of the polyester (PET) membrane was altered, transforming it from the original under-water oleophobic/under-oil superhydrophilic state to the under-water superoleophobic/under-oil superhydrophobic state after coated. The resulting membrane was applied to separate oil and water on-demand. The coated PET membrane exhibited high separation efficiency (>99 %) and high separation flux, effectively separating immiscible oil-water systems as well as oil-in-water and water-in-oil emulsions. The coated PET membrane also demonstrated the ability to perform alternate separation of oil-water mixtures through wetting, washing, and rewetting cycles, with repeated processes up to 10 times without significant reduction in separation efficiency. Furthermore, compared with the previous works, our approach offers a simpler and more convenient method for constructing under-liquid dual superlyophobic surface, making it more suitable for continuous corporate production. This study may provide inspiration for the production and application in large-scale of under-liquid dual superlyophobic membranes.
Collapse
Affiliation(s)
- Yulei Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengke Jia
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoying Shi
- Tianjin Tianshi College, Tianjin 301700, China.
| | - Songlin Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiayu Luan
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhanhua Hao
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yufeng Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Chen X, Zhang D, Guan Y, Chen D, Ge H, Wang Z, Bao M, Li Y. Joule Heating-Assisted Crude Oil Purification by a Poly(pyrrole)-Modified Microfibril Cellulose Membrane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2624-2636. [PMID: 38166459 DOI: 10.1021/acsami.3c15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Using membrane materials to purify viscous watery oil from industrial production processes and accidental oil spills is of great importance but still challenging. Based on the excellent electrical conductivity and electric-thermal conversion of poly(pyrrole) (PPy), a hydrophobic PPy-modified micro-fibrillated cellulose membrane (P-CP) was successfully prepared. The size of the P-CP membrane can be customized to meet specific requirements. In this research, the membrane diameter is capable of reaching 24 cm. By applying a voltage ranging from 0 to 12 V, the surface temperature of the P-CP membrane can be elevated to roughly 120 °C. After 10 cycles of heating and cooling under 12 V voltage, the electric-thermal curves, surface hydrophobicity, and pore structure of P-CP membrane can remain stable, which suggests remarkable electric-thermal stability and reliability despite prolonged operation. The P-CP membrane shows good linearity between voltage and current (R2 = 0.997) and easy temperature control from room temperature to ∼120 °C at low supply voltage (0-12 V). Under the condition of 12 V power supply and self-gravity, the separation flux of the P-CP membrane for water-in-oil (W/O) emulsions (kerosene, diesel) is 2-3 times higher than that at room temperature, and the separation efficiency is also improved. Importantly, the P-CP membrane shows excellent separation performance for high viscosity water-in-crude oil emulsions, with a separation flux of 40 L m-2 h-1 by gravity. Compared to the situation without electricity, the separation flux of water-in-crude oil emulsion has increased four-fold. The joule heating of the P-CP membrane expands its service time and application scenarios, demonstrating its great application prospects in actual viscous oil-water emulsion separation.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Hongwei Ge
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 266237 Qingdao, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| |
Collapse
|
5
|
Zhang Y, Tian S, Sha Q, Lv J, Han N, Zhang X. Covalent organic framework functionalized smart membranes with under-liquid dual superlyophobicity for efficient separation of oil/water emulsions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166895. [PMID: 37683856 DOI: 10.1016/j.scitotenv.2023.166895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The smart membrane with under-liquid dual superlyophobicity, which can achieve on-demand separation of oil/water emulsions only by simple liquid pre-wetting, is of essential value for the treatment of complicated real oil/water systems. Here, we first fabricated a stable suspension of imine-linked covalent organic framework nanospheres (TPB-DMTP-COF), and subsequently fabricated COF functionalized smart membranes with under-liquid dual superlyophobicity by immersing polyacrylonitrile-based (PAN-based) membranes into TPB-DMTP-COF nanosphere suspension. Accordingly, effective switchable separation of both oil-in-water and water-in-oil emulsions by TPB-DMTP-COF/PAN membranes can be achieved by employing pre-wetting processes (both the oil contact angle under water and the water contact angle under oil are over 150°). Specifically, the separation flux and the separation efficiency are higher than 1200 L/m2‧h and 98.0 %, and 2100 L/m2‧h and 97.4 % for the surfactant-stabilized oil-in-water and water-in-oil emulsions, respectively. Furthermore, the ultralow adhesions in liquid contributed to the outstanding reusability and antifouling resistance of the prepared TPB-DMTP-COF/PAN membranes. This work provides a feasible approach for fabricating a smart membrane with under-liquid dual superlyophobicity for oily wastewater treatment.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shiwei Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qiankun Sha
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China
| | - Jinjie Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|