1
|
Zhang W, Wang Z, Zhao Z, Wang P, Wang S, Ma J, Cheng W. High-stable bimetallic AgCu nanoalloys with core-shell structures for sustainable antibacterial and biofouling mitigation in nanofiltration. WATER RESEARCH 2025; 271:122986. [PMID: 39705753 DOI: 10.1016/j.watres.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Nanofiltration (NF) is crucial for advancing water purification and wastewater reuse technologies. Incorporating biocidal nanoparticles (NPs) such as AgNPs and CuNPs is promising for developing antibacterial and antibiofouling NF membranes, while their application is limited by NPs aggregation, high cost, and severe ion release. In this study, we developed novel NF membranes by integrating bimetallic AgCu nanoalloys via an in-situ reduction and coordination method facilitated by a polydopamine/polyethyleneimine (PDA/PEI) intermediate layer. The sequential deposition of Cu2+ onto nascent AgNPs formed uniform AgCuNPs with a unique core-shell structure. The Cu shell layer can shield the release of Ag+ from the Ag core and chelate with the PDA/PEI intermediate layer, thus controlling the release of biocidal ions and prolonging the biocidal properties of the membranes. As a result, the AgCuNP-modified membranes exhibited significantly improved membrane water permeability, salt rejection, and performance stability, along with reduced release of biocidal ions in the long-term operation. Notably, the bimetallic AgCuNP-modified membrane displayed superior antibacterial activity and biofouling reversibility compared to the commercial NF and monometallic Ag/Cu-modified membranes, achieving the highest sterilization rate (> 99 %), largest flux recovery rate (93 %), and lowest flux decline rate (16 %) in both static antibacterial and dynamic biofouling processes. The metal-semiconductor heterostructure of the AgCuNPs facilitated the electron transfer from the Ag core to the Cu shell, intensifying the substantial generation of reactive oxygen species (H2O2: 71.6 mmol l-1 m-2, •OH: 43.4 mmol l-1 m-2, and O2•-: 1.3 × 10-4) at the membrane-bacteria interface. The synergistic effects of the unique properties of AgCuNPs including microstructure, atomic composition, charge transfer, and ROS generation significantly enhanced the antibacterial capacity of the AgCuNP-modified membrane. This study presents a facile method for modifying NF membranes with bimetallic AgCuNPs to achieve enhanced antibacterial activity and biofouling reversibility, providing fundamental insights and promising potential for water treatment applications.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zilong Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
2
|
Farahbakhsh J, Najafi M, Golgoli M, Haeri SZ, Khiadani M, Razmjou A, Zargar M. Dual modification of reverse osmosis membranes with NH 2-MIL-125 and functionalised multiwalled carbon nanotubes for enhanced nanoplastic removal. CHEMOSPHERE 2024; 361:142401. [PMID: 38795918 DOI: 10.1016/j.chemosphere.2024.142401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The present study describes a novel double-modified strategy for developing high-performance thin-film composite reverse osmosis (TFC-RO) membranes by incorporating titanium-based metal organic frameworks (NH2-MIL-125) and functionalised multiwalled carbon nanotubes (MWCNTs) into the support layer and selective layer, respectively. Initially, the support layer was subjected to successive modifications using NH2-MIL-125 mixed with polysulfone (PSF) in dimethylformamide DMF solution to investigate their impact on the performance and properties of the support layer and resultant TFC-RO membranes. Results indicated that the new structure of the modified support layer had significant influences on the developed TFC-RO membranes. Notably, the pristine PSF support exhibited a large surface pore size, medium porosity, and strong hydrophobicity, resulting in a low-flux TFC-RO membrane. However, after modification with NH2-MIL-125, the optimal blend support demonstrated a small surface pore size, high porosity, and improved hydrophilicity, favouring the formation of a high performance TFC-RO membrane. The incorporation of functionalised MWCNTs nanochannels into the selective layer, using the optimal NH2-MIL-125-PSF blended support, resulted in a smoother and more hydrophilic TFC-RO membrane with enhanced negative charge to improve antifouling properties against negative foulants (i.e., nanoplastics (NPs) and bovine serum albumin (BSA)). The double-modified membrane (TFC-RO-DM) exhibited superior performance over the conventional PSF-TFC-RO membrane. Notably, the maximum water flux reached 39 L m-2.h-1 with 98.4% NaCl rejection. The membrane exhibited a high flux recovery rate of 92% following a 30-min physical cleaning process. Additionally, the TFC-RO-DM membrane displayed reduced fouling against NPs suggesting the great promise of this innovative double-modification approach for the advancement of high-performance TFC-RO membranes.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Seyedeh Zahra Haeri
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia.
| |
Collapse
|
3
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Zhang J, Yuan S, Zhu X, Zhang N, Wang Z. Hypercrosslinked Hydrogel Composite Membranes Targeted for Removal of Volatile Organic Compounds via Selective Solution-Diffusion in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6039-6048. [PMID: 38507701 DOI: 10.1021/acs.est.3c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
6
|
Yun ET, Lee J, Lee SSS, Hong S, Fortner JD. Harnessing the potential of in-situ, electrically generated microbubbles via nickel foam for enhanced, low energy membrane fouling control. WATER RESEARCH 2024; 249:120886. [PMID: 38103442 DOI: 10.1016/j.watres.2023.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
For membrane-based, water treatment technologies, fouling remains a significant challenge for pressure-driven processes. While many antifouling strategies have been proposed, there remains significant room for improved efficiency. Direct application of microbubbles (MBs) at a membrane surface offers a promising approach for managing interfacial fouling through continuous physical interaction(s). Despite such potential, to date, integration and optimization of in-situ generated MBs at the membrane interface that are both highly antifouling with minimal energy inputs and unwanted side reactions remains mostly outstanding. Here we demonstrate the application of conductive, porous nickel foam for electrolysis-based generation of hydrogen microbubbles at an ultra-filtration (UF) membrane interface, which significantly mitigates membrane fouling for a range of model foulants. System characterization and optimization includes comparison of metal foams (Ni, Cu, Ti), faradic efficiencies, hydrogen evolution reaction (HER) curves, cyclic voltammetry, and quantification of hydrogen gas flux and bubble size, as a function of applied current. When optimized, we report rapid (<5 min) and near complete (∼99 %) flux recovery for three classes of foulants, including calcium alginate, humic acid (HA), and SiO2 particles. For all, the described MB-based approach is orders of magnitude more energy efficient when compared to conventional cleaning strategies. Finally, we demonstrate the MB-based regeneration/cleaning process is stable and repeatable for ten cycles and also highly effective for a challenge water (as a model oilfield brine). Taken together, this work presents a novel and efficient approach for the application of in-situ electrically generated MBs to support sustainable pressure-driven membrane processes.
Collapse
Affiliation(s)
- Eun-Tae Yun
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Junseok Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Seung Soo S Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Seungkwan Hong
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA.
| |
Collapse
|
7
|
Liao X, Lim YJ, Khayet M, Liao Y, Yao L, Zhao Y, Razaqpur AG. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. WATER RESEARCH 2023; 244:120511. [PMID: 37651868 DOI: 10.1016/j.watres.2023.120511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is driven by phase change. The core of this technology is the hydrophobic microporous membrane that prevents mass transfer of the liquid while allowing the vapor phase to pass through the membrane's pores. Currently, MD is challenged by its high energy consumption and membrane degradation due to fouling, scaling and wetting. The use of electrically conductive membranes (ECMs) is a promising alternative method to overcome these challenges by inducing localized Joule heating, as well as mitigating and monitoring membrane fouling/scaling/wetting. The objective of this review is to consolidate recent advances in ECMs from the standpoint of conductive materials, membrane fabrication methodologies, and applications in MD processes. First, the mechanisms of ECMs-based MD processes are reviewed. Then the current trends in conductive materials and membrane fabrication methods are discussed. Thereafter, a comprehensive review of ECMs in MD applications is presented in terms of the different processes using Joule heating and various works related to membrane fouling, scaling, and wetting control and monitoring. Key insights in terms of energy consumption, economic viability and scalability are furnished to provide readers with a holistic perspective of the ECMs potential to achieve better performances and higher efficiencies in MD. Finally, we illustrate our perspectives on the innovative methods to address current challenges and provide insights for advancing new ECMs designs. Overall, this review sums up the current status of ECMs, looking at the wide range of conductive materials and array of fabrication methods used thus far, and putting into perspective strategies to deliver a more competitive ECMs-based MD process in water treatment.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China
| | - Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China.
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yali Zhao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Kim J, Tijing L, Shon HK, Hong S. Electrically conductive membrane distillation via an alternating current operation for zero liquid discharge. WATER RESEARCH 2023; 244:120510. [PMID: 37634460 DOI: 10.1016/j.watres.2023.120510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Membrane distillation (MD) shows promise for achieving high salinity treatment and zero liquid discharge (ZLD) compared to conventional water treatment processes due to its unique characteristics, including low energy consumption and high resulting water quality. However, performance degradation due to fouling and scaling under high recovery conditions remains a challenge, particularly considering the need to control both cations and anions for maximum scaling mitigation. Accordingly, in this study, alternating current (AC) operation for electrically conductive membrane distillation (ECMD) is newly proposed, based on its potential for controlling both cations and anions, in contrast to conventional direct current (DC) operation. Systematic experiments and theoretical analysis show that water recovery in ECMD can be increased by 27% through AC operation. The proposed modification and effective AC operation of ECMD increase the practicality of using MD in desalination for a high recovery rate, perhaps even for ZLD.
Collapse
Affiliation(s)
- Junghyun Kim
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney (UTS), 15 Broadway, NSW 2007, Australia.
| | - Seungkwan Hong
- Department of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Kilicarslan B, Sardan Ekiz M, Bayram C. Electrostatic Repulsive Features of Free-Standing Titanium Dioxide Nanotube-Based Membranes in Biofiltration Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3400-3410. [PMID: 36786472 PMCID: PMC9996822 DOI: 10.1021/acs.langmuir.2c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This study presents the electrostatic repulsive features of electrochemically fabricated titanium dioxide nanotube (NT)-based membranes with different surface nanomorphologies in cross-flow biofiltration applications while maintaining a creatinine clearance above 90%. Although membranes exhibit antifouling behavior, their blood protein rejection can still be improved. Due to the electrostatically negative charge of the hexafluorotitanate moiety, the fabricated biocompatible, superhydrophilic, free-standing, and amorphous ceramic nanomembranes showed that about 20% of negatively charged 66 kDa blood albumin was rejected by the membrane with ∼100 nm pores. As the nanomorphology of the membrane was shifted from NTs to nanowires by varying fabrication parameters, pure water flux and bovine serum albumin (BSA) rejection performance were reduced, and the membrane did not lose its antifouling behavior. Herein, nanomembranes with different surface nanomorphologies were fabricated by a multi-step anodic oxidation process and characterized by scanning electron microscopy, atomic force microscopy, water contact angle analysis, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The membrane performance of samples was measured in 3D printed polyethylene terephthalate glycol flow cells replicating implantable artificial kidney models to determine their blood toxin removal and protein loss features. In collected urine mimicking samples, creatinine clearances and BSA rejections were measured by the spectrophotometric Jaffe method and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Bogac Kilicarslan
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Advanced
Technologies Application and Research Centre, Hacettepe University, Ankara 06800, Turkey
| | - Cem Bayram
- Department
of Nanotechnology and Nanomedicine, Graduate School of Science and
Engineering, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|