1
|
Fukuda M, Sadano K, Maeda T, Murata E, Miyashita N, Tanaka T, Mori T, Saito A, Sakai K. Characterization of anisotropic pore structure and dense selective layer of capillary membranes for long-term ECMO by cross-sectional ion-milling method. J Artif Organs 2025; 28:50-60. [PMID: 39162915 DOI: 10.1007/s10047-024-01461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Since the COVID-19 pandemic of 2020-2023, extracorporeal membrane oxygenator (ECMO) has attracted considerable attention worldwide. It is expected that ECMO with long-term durability is put into practical use in order to prepare for next emerging infectious diseases and to facilitate manufacturing for novel medical devices. Polypropylene (PP) and polymethylpentene (PMP) capillary membranes are currently the mainstream for gas exchange membrane for ECMO. ECMO support days for COVID-19-related acute hypoxemic respiratory failure have been reported to be on average for 14 or 24 days. It is necessary to improve opposing functions such that promoting the permeation of oxygen and carbon dioxide and inhibiting the permeation of water vapor or plasma to develop sufficient durability for long-term use. For this purpose, accurately controlling the anisotropy of the pore structure of the entire cross section and functions of capillary membrane is significant. In this study, we focused on the cross-sectional ion-milling (CSIM) method, to precisely clarify the pore structure of the entire cross section of capillary membrane for ECMO, because there is less physical stress on the porous structure applied during the preparation of cross-sectional samples of porous capillary membranes. We attempted to observe the cross sections of commercially available PMP membranes using the CSIM method. As a result, we succeeded in fabricating fine-scale flat cross-sectional samples of PMP capillary membranes. The pore structures and the degree of anisotropy of the cross sections are quantitatively clarified. The achievements and the approaches of this study are being applied to the development of next-generation gas exchange membranes.
Collapse
Affiliation(s)
- Makoto Fukuda
- Department of Biomedical Engineering, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan.
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan.
| | - Kazunori Sadano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan
| | - Tomoki Maeda
- Department of Biomedical Engineering, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan
| | - Eri Murata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan
| | - Naoyuki Miyashita
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan.
| | - Tsutomu Tanaka
- Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi-City, Osaka, 594-1157, Japan
| | - Tomohiro Mori
- Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama-City, Wakayama, 649-6261, Japan
| | - Akane Saito
- Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama-City, Wakayama, 649-6261, Japan
| | - Kiyotaka Sakai
- Professor Emeritus of Chemical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555, Japan
| |
Collapse
|
2
|
Li D, Zhai J, Wang K, Shen Y, Huang X. Three-Dimensional Reconstruction-Characterization of Polymeric Membranes: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2891-2916. [PMID: 39913944 DOI: 10.1021/acs.est.4c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Polymeric membranes serve as vital separation materials in diverse energy and environmental applications. A comprehensive understanding of three-dimensional (3D) structures of membranes is critical to performance evaluation and future design. Such quantitative 3D structural information is beyond the limit of most employed conventional two-dimentional characterization techniques such as scanning electron microscopy. In this review, we summarize eight types of 3D reconstruction-characterization techniques for membrane materials. Originated from life and materials science, these techniques have been optimized to reveal the 3D structures of membrane materials in the separation field. We systematically introduce the theories of each technique, summarize the sample preparation procedures developed for membrane materials, and demonstrate step-by-step data processing, including 3D model reconstruction and subsequent characterization. Representative case studies are introduced to show the progress of this field and how technical challenges have been overcome over the years. In the end, we share our perspectives and believe that this review can serve as a useful reference for 3D reconstruction-characterization techniques developed for membrane materials.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Juan Zhai
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Yuexiao Shen
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Fukuda M, Sakai K. 3D porous structure imaging of membranes for medical devices using scanning probe microscopy and electron microscopy: from membrane science points of view. J Artif Organs 2024; 27:83-90. [PMID: 38311666 DOI: 10.1007/s10047-023-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
The evolution of hemodialysis membranes (dialyzer, artificial kidney) was remarkable, since Dow Chemical began manufacturing hollow fiber hemodialyzers in 1968, especially because it involved industrial chemistry, including polymer synthesis and membrane manufacturing process. The development of hemodialysis membranes has brought about the field of medical devices as a major industry. In addition to conventional electron microscopy, scanning probe microscopy (SPM), represented by atomic force microscopy (AFM), has been used in membrane science research on porous membranes for hemodialysis, and membrane science contributes greatly to the hemodialyzer industry. Practical studies of membrane porous structure-function relationship have evolved, and methods for analyzing membrane cross-sectional morphology were developed, such as the ion milling method, which was capable of cutting membrane cross sections on the order of molecular size to obtain smooth surface structures. Recently, following the global pandemic of SARS-CoV-2 infection, many studies on new membranes for extracorporeal membrane oxygenator have been promptly reported, which also utilize membrane science researches. Membrane science is playing a prominent role in membrane-based technologies such as separation and fabrication, for hemodialysis, membrane oxygenator, lithium ion battery separators, lithium recycling, and seawater desalination. These practical studies contribute to the global medical devices industry.
Collapse
Affiliation(s)
- Makoto Fukuda
- Department of Biomedical Engineering, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan.
| | - Kiyotaka Sakai
- Professor Emeritus of Chemical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
4
|
Prochukhan N, Rafferty A, Canavan M, Daly D, Selkirk A, Rameshkumar S, Morris MA. Development and application of a 3D image analysis strategy for focused ion beam - Scanning electron microscopy tomography of porous soft materials. Microsc Res Tech 2024; 87:1335-1347. [PMID: 38362795 DOI: 10.1002/jemt.24514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
In recent years, the potential of porous soft materials in various device technologies has increased in importance due to applications in fields, such as wearable electronics, medicine, and transient devices. However, understanding the 3-dimensional architecture of porous soft materials at the microscale remains a challenge. Herein, we present a method to structurally analyze soft materials using Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography. Two materials, polymethyl methacrylate (PMMA) membrane and pine wood veneer were chosen as test-cases. FIB-SEM was successfully used to reconstruct the true topography of these materials in 3D. Structural and physical properties were subsequently deduced from the rendered 3D models. The methodology used segmentation, coupled with optimized thresholding, image processing, and reconstruction protocols. The 3D models generated pore size distribution, pore inter-connectivity, tortuosity, thickness, and curvature data. It was shown that FIB-SEM tomography provides both an informative and visual depiction of structure. To evaluate and validate the FIB-SEM reconstructions, porous properties were generated from the physical property analysis techniques, gas adsorption analysis using Brunauer-Emmett-Teller (BET) surface area analysis and mercury intrusion porosimetry (MIP) analysis. In general, the data obtained from the FIB-SEM reconstructions was well-matched with the physical data. RESEARCH HIGHLIGHTS: Porous specimens of both synthetic and biological nature, a poly(methyl methacrylate) membrane and a pine veneer respectively, are reconstructed via FIB-SEM tomography without resin-embedding. Different thresholding and reconstruction methods are explored whereby shadowing artifacts are present with the aid of free open-source software. Reconstruction data is compared to physical data: MIP, gas adsorption isotherms which are analyzed via BET and Barrett-Joyner-Halenda (BJH) analysis to yield a full picture of the materials.
Collapse
Affiliation(s)
- Nadezda Prochukhan
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Aran Rafferty
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
| | - Megan Canavan
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
| | - Dermot Daly
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
| | - Andrew Selkirk
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
| | - Saranya Rameshkumar
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Michael A Morris
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER) Research Centres, Trinity College, Dublin, Ireland
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Roberge H, Moreau P, Couallier E, Abellan P. Lipids and Proteins Differentiation in Membrane Fouling Using Heavy Metal Staining and Electron Microscopy at Cryogenic Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2090-2098. [PMID: 37966971 DOI: 10.1093/micmic/ozad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled. In this study, we present the development of a heavy metal staining technique for identification and differentiation of biomolecules in membrane fouling, which is compatible with cryofixation methods. A general contrast enhancement of biomolecules and fouling is achieved. Our observations indicate a strong interaction between biomolecules: A tendency of proteins, both in solution as well as in the fouling, to surround the lipids is observed. Using transmission electron microscopy and scanning electron microscopy at cryogenic conditions, cryo-SEM, in combination with energy-dispersive X-ray spectroscopy, the spatial distribution of proteins and lipids within fouling is shown and the role of proteins in fouling discussed.
Collapse
Affiliation(s)
- Hélène Roberge
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| | - Estelle Couallier
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| |
Collapse
|
6
|
Vasco G, Arima V, Boudjelida S, Carraro M, Bianco M, Zizzari A, Perrone E, Galiano F, Figoli A, Cesaria M. Polymeric Membranes Doped with Halloysite Nanotubes Imaged using Proton Microbeam Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2970. [PMID: 37999324 PMCID: PMC10674683 DOI: 10.3390/nano13222970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polymeric membranes are useful tools for water filtration processes, with their performance strongly dependent on the presence of hydrophilic dopants. In this study, polyaniline (PANI)-capped aluminosilicate (halloysite) nanotubes (HNTs) are dispersed into polyether sulfone (PES), with concentrations ranging from 0.5 to 1.5 wt%, to modify the properties of the PES membrane. Both undoped and HNT-doped PES membranes are investigated in terms of wettability (static and time-dependent contact angle), permeance, mechanical resistance, and morphology (using scanning electron microscopy (SEM)). The higher water permeance observed for the PES membranes incorporating PANI-capped HNTs is, finally, assessed and discussed vis-à-vis the real distribution of HNTs. Indeed, the imaging and characterization in terms of composition, spatial arrangement, and counting of HNTs embedded within the polymeric matrix are demonstrated using non-destructive Micro Particle Induced X-ray Emission (µ-PIXE) and Scanning Transmission Ion Microscopy (STIM) techniques. This approach not only exhibits the unique ability to detect/highlight the distribution of HNTs incorporated throughout the whole thickness of polymer membranes and provide volumetric morphological information consistent with SEM imaging, but also overcomes the limits of the most common analytical techniques exploiting electron probes. These aspects are comprehensively discussed in terms of practical analysis advantages.
Collapse
Affiliation(s)
- Giovanna Vasco
- CEDAD—Center of Applied Physics, Dating and Diagnostics, Cittadella della Ricerca, University of Salento, SS. 7, Km. 7300, 72100 Brindisi, Italy;
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Soufiane Boudjelida
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Department of Material Sciences, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Institute on Membrane Technology (CNR-ITM), University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Monica Bianco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Alessandra Zizzari
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Elisabetta Perrone
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Maura Cesaria
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
7
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Mura F, Cognigni F, Ferroni M, Morandi V, Rossi M. Advances in Focused Ion Beam Tomography for Three-Dimensional Characterization in Materials Science. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5808. [PMID: 37687502 PMCID: PMC10488958 DOI: 10.3390/ma16175808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Over the years, FIB-SEM tomography has become an extremely important technique for the three-dimensional reconstruction of microscopic structures with nanometric resolution. This paper describes in detail the steps required to perform this analysis, from the experimental setup to the data analysis and final reconstruction. To demonstrate the versatility of the technique, a comprehensive list of applications is also summarized, ranging from batteries to shale rocks and even some types of soft materials. Moreover, the continuous technological development, such as the introduction of the latest models of plasma and cryo-FIB, can open the way towards the analysis with this technique of a large class of soft materials, while the introduction of new machine learning and deep learning systems will not only improve the resolution and the quality of the final data, but also expand the degree of automation and efficiency in the dataset handling. These future developments, combined with a technique that is already reliable and widely used in various fields of research, are certain to become a routine tool in electron microscopy and material characterization.
Collapse
Affiliation(s)
- Francesco Mura
- Department of Basic and Applied Sciences, University of Rome “La Sapienza”, Via Antonio Scarpa 14, 00161 Rome, Italy; (F.C.); (M.R.)
| | - Flavio Cognigni
- Department of Basic and Applied Sciences, University of Rome “La Sapienza”, Via Antonio Scarpa 14, 00161 Rome, Italy; (F.C.); (M.R.)
| | - Matteo Ferroni
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Section of Bologna, Via Piero Gobetti 101, 40129 Bologna, Italy; (M.F.); (V.M.)
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Vittorio Morandi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Section of Bologna, Via Piero Gobetti 101, 40129 Bologna, Italy; (M.F.); (V.M.)
| | - Marco Rossi
- Department of Basic and Applied Sciences, University of Rome “La Sapienza”, Via Antonio Scarpa 14, 00161 Rome, Italy; (F.C.); (M.R.)
| |
Collapse
|
9
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|