1
|
Aier I, Dhar Purkayastha D. Hierarchical 0D CuO Wrapped by Petal-like 2D ZnO: A Strategic Approach of Superhydrophobic Melamine Sponge toward Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9702-9716. [PMID: 38648037 DOI: 10.1021/acs.langmuir.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In addressing the pressing environmental challenges posed by frequent oil spills, this work presents a novel approach of synthesizing a superhydrophobic three-dimensional (3D) porous melamine sponge (MS). CuO and ZnO nanoparticles were grown on the MS via a hydrothermal method to create MS/CuO/ZnO with multiscale hierarchical nanostructures. The resulting material exhibited a stable water contact angle of 155° through various tests. MS/CuO/ZnO demonstrated exceptional oil absorption capacities (40-145 g/g and 0.83-0.99 mL.cm-3), surpassing 98% efficiency in oil separation, and retained reusability for 10 cycles. Impressively, the sponge achieved successful separation of oil/water emulsions with a permeation flux of 14870 L m-2 h-1. The composite sponge, distinguished by its high photodegradation ability, can degrade both water- and oil-targeted pollutants under visible light irradiation from light-emitting diode (LED). With its remarkable attributes including superior oil absorption, excellent oil/water separation, mechanical resistance, and excellent photocatalytic ability, it exhibits considerable potential for applications in both wastewater treatment and large-scale marine oil spill response. The easily prepared MS/CuO/ZnO emerges as a versatile solution capable of addressing pressing challenges and marking a significant leap toward sustainable and impactful environmental remediation.
Collapse
Affiliation(s)
- Imlilemla Aier
- Department of Physics, National Institute of Technology Nagaland, Chumoukedima, Nagaland 797103, India
| | - Debarun Dhar Purkayastha
- Department of Physics, National Institute of Technology Nagaland, Chumoukedima, Nagaland 797103, India
| |
Collapse
|
2
|
Zhang T, Wang X, Dong Y, Li J, Yang XY. Effective separation of water-in-oil emulsions using an under-medium superlyophilic membrane with hierarchical pores. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133305. [PMID: 38141309 DOI: 10.1016/j.jhazmat.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. To address the challenges posed by the water-oil interface, superwetting materials have been designed to accomplish separation through filtration and adsorption. Superhydrophobic membranes prevent the permeation of water droplets owing to extreme repellence and their size-sieving abilities. However, their use in remediating water-contaminated oil is limited by high oil viscosities. Meanwhile, in-air superhydrophilic sorbents are rarely employed for the separation of water-in-oil emulsions due to the thermodynamic and kinetic limitations of water adsorption in oil. Herein, the integration of an under-medium superlyophilic membrane with the hierarchical porous structure of wood is presented for filtration-driven selective adsorption of water from surfactant-stabilized (10 g/L) water-in-oil emulsions. Compared to filtration through a natural wood membrane or direct adsorption using an under-oil superhydrophilic wood membrane, the under-medium superlyophilic wood membrane demonstrated high separation efficiencies of > 99.95% even when applied to the regeneration of high-viscosity lubricating (6.3 mPa s) and edible (50.5 mPa s) oils, exhibiting viscosity-dependent fluxes and excellent stability. Moreover, the cost of purifying 200 mL of lubricating oil using the modified wood membrane was much lower than the oil's market price and required a low energy consumption of ca. 1.72 kWh. ENVIRONMENTAL IMPLICATION: The ever-growing use of petroleum and industrial/domestic oil products has led to excessive (estimated at a million tons per year) output of waste oils. Because direct discharge of waste oils into the environment causes serious pollution problems, separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. Here filtration-driven water adsorption has been demonstrated to be a feasible method for the remediation of water-contaminated waste oils, even those that are highly viscous.
Collapse
Affiliation(s)
- Tianyue Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Xuejiao Wang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
3
|
Liao J, Lin X, Chen B, Yang M, Liu W, Cao Y, Zhou J, Zhong J. Engineering an Almost All-Waterborne System for Transparent yet Superhydrophobic Surfaces with High Liquid Impalement Resistance. NANO LETTERS 2024; 24:187-194. [PMID: 38088862 DOI: 10.1021/acs.nanolett.3c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Realistically, green manufacturing of transparent superhydrophobic surfaces (SHSs) and high liquid impalement resistance for outdoor engineering are very necessary but pretty challenging. To address this, an almost all-waterborne system composed of synthesized partially open-cage fluorinated polyhedral oligomeric silsesquioxane bearing a pair of -OH (poc-FPOSS-2OH), silica sol, and resin precursor is engineered. The transparent SHSs facilely formed by this system are featured with the exclusive presence of wrapped silica nanoparticle (SiNP) dendritic networks at solid-gas interfaces. The wrapped SiNP dendritic networks have a small aggregation size and low distribution depth, making SHSs highly transparent. The Si-O polymeric wrappers render mechanical flexibility to SiNP dendritic networks and thus enable transparent SHSs to resist high-speed water jet impinging with a Weber number of ≥19 800 in conjunction with the extremely low-surface-energy poc-FPOSS-2OH, which is the highest liquid impalement resistance so far among waterborne SHSs, and can rival the state-of-the-art solventborne SHSs.
Collapse
Affiliation(s)
- Jingwen Liao
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilin Lin
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Boxu Chen
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Mingjin Yang
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yingfan Cao
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Junli Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institution, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinyi Zhong
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Yang Y, Dong J, Wang R, Lin Z, Cai Z. Urchin-like fluorinated covalent organic frameworks decorated fabric for effective self-cleaning and versatile oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132149. [PMID: 37536158 DOI: 10.1016/j.jhazmat.2023.132149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Oil contamination and industrial organic pollutants emission have been a serious problem affecting the ecological and residential environment. Membrane-based separation shows great application prospect due to its low-cost, environmental-friendly and easy operation. Therefore, the development of efficient oil-water separation membranes is highly desirable. Herein, a fabric filter with superwettability was prepared by coating urchin-like fluorinated covalent organic frameworks (COFs) on fabric, which was well utilized in filtering immiscible oil-water mixture and surfactant-stabilized water-in-oil emulsion driven only by gravity for the first time. The as-prepared COF fabric filter (defined as fabric@u-FCOF) possessed many outstanding properties, including superhydrophobicity with the water contact angle of approximately 151.6°, satisfactory resistance for alkaline, acidic and saline environments, as well as superior mechanical durability under harsh conditions. Because of the super-micropore of fabric@u-FCOF and the nanopore in the COF coating, the obtained fabric@u-FCOF exhibited excellent performances in terms of separation efficiency and permeability, in which the oil flux was up to 16964 L·m-1·h-2 and separation efficiency for the mixed o-dichlorobenzene/water was higher than 99.4%. In addition, the fabric@u-FCOF also showed excellent self-cleaning performance due to the micro/nano hierarchical structure of its surface. These excellent properties make it an ideal candidate for applications of oil/water separation and water purification.
Collapse
Affiliation(s)
- Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ran Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077 Hong Kong, SAR, PR China.
| |
Collapse
|
5
|
Zhang B, Peng Y, Yao Y, Hong X, Wu Y. Constructing a composite microfiltration carbon membrane by TiO 2 and Fe 2O 3 for efficient separation of oil-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92027-92041. [PMID: 37480529 DOI: 10.1007/s11356-023-28728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China.
| | - Yao Peng
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yanhu Yao
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Xueqian Hong
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yonghong Wu
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| |
Collapse
|
6
|
Batool M, B. Albargi H, Ahmad A, Sarwar Z, Khaliq Z, Qadir MB, Arshad SN, Tahir R, Ali S, Jalalah M, Irfan M, Harraz FA. Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1146. [PMID: 37049240 PMCID: PMC10096561 DOI: 10.3390/nano13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.
Collapse
Affiliation(s)
- Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zahid Sarwar
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan;
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan;
| | - Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Sultan Ali
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
7
|
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. MEMBRANES 2022; 12:915. [PMID: 36295674 PMCID: PMC9606928 DOI: 10.3390/membranes12100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Every year the problem of water purification becomes more relevant. This is due to the continuous increase in the level of pollution of natural water sources, an increase in the population, and sharp climatic changes. The growth in demand for affordable and clean water is not always comparable to the supply that exists in the water treatment market. In addition, the amount of water pollution increases with the increase in production capacity, the purification of which cannot be fully handled by conventional processes. However, the application of novel nanomaterials will enhance the characteristics of water treatment processes which are one of the most important technological problems. In this review, we considered the application of carbon nanomaterials in membrane water purification. Carbon nanofibers, carbon nanotubes, graphite, graphene oxide, and activated carbon were analyzed as promising materials for membranes. The problems associated with the application of carbon nanomaterials in membrane processes and ways to solve them were discussed. Their efficiency, properties, and characteristics as a modifier for membranes were analyzed. The potential directions, opportunities and challenges for application of various carbon nanomaterials were suggested.
Collapse
|