1
|
Gao Q, Gan J, Wang P, Huang Y, Zhang D, Yu W. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. EXPLORATION (BEIJING, CHINA) 2025; 5:20240012. [PMID: 40040832 PMCID: PMC11875449 DOI: 10.1002/exp.20240012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 03/06/2025]
Abstract
Air pollution is caused by the perilous accumulation of particulate matter (PM) and harmful gas molecules of different sizes. There is an urgent need to develop highly efficient air filtration systems capable of removing particles with a wide size distribution. However, the efficiency of current air filters is compromised by controlling their hierarchical pore size. Inspired by the graded filtration mechanisms in the human respiratory system, microporous ZIF-67 is in situ synthesized on a 3D interconnected network of bamboo cellulose fibers (BCFs) to fabricate a multiscale porous filter with a comprehensive pore size distribution. The macropores between the BCFs, mesopores formed by the BCF microfibers, and micropores within the ZIF-67 synergistically facilitate the removal of particulates of different sizes. The filtration capabilities of PM2.5 and PM0.3 could reach 99.3% and 98.6%, respectively, whereas the adsorption of formaldehyde is 88.7% within 30 min. In addition, the filter exhibits excellent antibacterial properties (99.9%), biodegradability (80.1% degradation after 14 days), thermal stability, and skin-friendly properties (0 irritation). This study may inspire the research of using natural features of renewable resources to design high-performance air-filtration materials for various applications.
Collapse
Affiliation(s)
- Qi Gao
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Jian Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
| | - Pixiang Wang
- Center for Materials and Manufacturing SciencesDepartment of Chemistry and PhysicsTroy UniversityTroyUSA
| | - Yuxiang Huang
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Daihui Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
- Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingChina
| | - Wenji Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Baig U, Waheed A, Jillani SMS. Recent Advancements in Metal-Organic Framework-Based Membranes for Hydrogen Separation: A Review. Chem Asian J 2024; 19:e202300619. [PMID: 37818783 DOI: 10.1002/asia.202300619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Metal-organic frameworks (MOFs) are promising porous materials that have huge potential for gas separation when put in the membrane configuration. MOFs have huge potential due to certain salient features of the MOFs such as excellent pore size, ease of tuning the pore chemistry, higher surface area, and chemical and thermal stabilities. MOFs have been explored for various gas separation and storage applications. This review discusses various approaches for fabricating MOFs-based membranes for the separation of H2 gas from a variety of feeds having various gases CO2, CO, N2, and CH4 as impurities. The emphasis has been put on three types of membranes for H2 separation which include MOFs-based hollow fibrous/tubular/disk membranes, MOFs-based mixed matrix membranes (MMMs), and MOFs-based stand-alone membranes. In addition, various challenges such as reducing inhomogeneity between MOFs and polymeric matrices have also been discussed. Similarly, the approaches to successfully decorating MOFs on different supports in different configurations have been explained. The possible ways of improving the MOFs-based membranes for H2 have also been discussed.
Collapse
Affiliation(s)
- Umair Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul Waheed
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Quan G, Wu Y, Li W, Li D, Gong B, Sun M, Ao Y, Xiao L, Liu Y. Growth of ZnO nanorods/flowers on the carbon fiber surfaces using sodium alginate as medium to enhance the mechanical properties of composites. Int J Biol Macromol 2024; 260:129457. [PMID: 38232869 DOI: 10.1016/j.ijbiomac.2024.129457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
The chemical inertness of the carbon fiber (CF) surface results in suboptimal mechanical properties of the prepared composites. To address this issue, we employed a combination of tannic acid and 3-aminopropyltriethoxysilane mixture (TA-APTES) grafted sodium alginate (SA) as a medium to enhance the interfacial properties of composites through the growth of ZnO nanoparticles on CF surfaces. ZnO nanolayers with rod-like and flower-like structures were obtained by adjusting the pH of the reaction system (pH = 10 and 12, respectively). Characterization results show that in comparison with the untreated CF composites, in the flexural strength, flexural modulus, interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the as-prepared CF/TA-APTES/SA/ZnO10 (nanorods) composites were improved by 40.8 %, 58.4 %, 44.9 % and 47.8 %, respectively. The prepared CF/TA-APTES/SA/ZnO12 (nanoflowers) composite showed an increase in flexural strength, flexural modulus, ILSS and IFSS by 39.8 %, 63.6 %, 47.3 % and 48.2 %, respectively. These positive results indicate that the ZnO nanolayers increase the interfacial phase area and fiber surface roughness, thereby enhancing mechanical interlocking and load transfer between the fibers and resin matrix. This work provides a novel interfacial modification method for preparing CF composites used in longer and more durable wind turbine blades.
Collapse
Affiliation(s)
- Guipeng Quan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Advanced Institute of Materials Science, Jilin Provincial Laboratory of Carbon Fiber and Composites, Changchun University of Technology, Changchun 130012, China
| | - Yunhuan Wu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Weiwen Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Daimei Li
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Bao Gong
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Mengya Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Yuhui Ao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Advanced Institute of Materials Science, Jilin Provincial Laboratory of Carbon Fiber and Composites, Changchun University of Technology, Changchun 130012, China
| | - Linghan Xiao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China; Advanced Institute of Materials Science, Jilin Provincial Laboratory of Carbon Fiber and Composites, Changchun University of Technology, Changchun 130012, China.
| | - Yujing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Design of Robust FEP Porous Ultrafiltration Membranes by Electrospinning-Sintered Technology. Polymers (Basel) 2022; 14:polym14183802. [PMID: 36145947 PMCID: PMC9500678 DOI: 10.3390/polym14183802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Perfluoropolymer membranes are widely used because of their good environmental adaptability. Herein, the ultrafine fibrous FEP porous membranes were fabricated with electrospinning-sintered technology. The effects of PVA content and sintering temperature on the fabricated membranes’ morphologies and properties were investigated. The results indicate that a kind of dimensionally stable network structure was formed in the obtained ultrafine fibrous FEP porous membranes after sintering the nascent ultrafine fibrous FEP/PVA membranes. The optimal sintering conditions were obtained by comparing the membranes’ performance in terms of membrane morphology, hydrophobicity, mechanical strength, and porosity. When the sintering temperature was 300 °C for 10 min, the porosity, water contact angle, and liquid entry pressure of the membrane were 62.7%, 124.2° ± 2.1°, and 0.18 MPa, respectively. Moreover, the ultrafine fibrous FEP porous membrane at the optimal sintering conditions was tested in vacuum membrane distillation with a permeate flux of 15.1 L·m−2·h−1 and a salt rejection of 97.99%. Consequently, the ultrafine fibrous FEP porous membrane might be applied in the seawater desalination field.
Collapse
|
5
|
Yan J, Ji T, Sun Y, Meng S, Wang C, Liu Y. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|