1
|
Shi Y, Mai Z, Guan K, Li B, Shen Q, Song Q, Fu W, Xiang S, Takagi R, Matsuyama H. Nanomorphogenesis of interlayered polyamide membranes for precise ion sieving in lithium extraction. WATER RESEARCH 2025; 274:123063. [PMID: 39740327 DOI: 10.1016/j.watres.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li+/Mg2+selectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge. In this study, we report the development of an interlayered thin-film composite (iTFC) membrane incorporating functionalized sulfonated carrageenan to regulate the interfacial polymerization process. This integrated interlayer plays a crucial role in controlling the diffusion and spatial distribution of amine monomers, leading to the formation of dense, nano-striped polyamide networks. These structural improvements including refined pore size and reduced negative charge significantly enhanced Li+/Mg2+selectivity (133.5) and increased permeance by 2.5 times compared to conventional TFC membranes. Additionally, the nano-striped structure optimized the membrane filtration area while minimizing ion transport resistance, effectively overcoming the traditional trade-off between ion selectivity and permeability. This study highlights the potential of iTFC membranes for achieving both high lithium purity and recovery, offering a promising avenue for large-scale lithium extraction from brines.
Collapse
Affiliation(s)
- Yongxuan Shi
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Bowen Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Wenming Fu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shang Xiang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
2
|
Gan Q, Hu Y, Wu C, Yang Z, Peng LE, Tang CY. Nanofoamed Polyamide Membranes: Mechanisms, Developments, and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20812-20829. [PMID: 39529485 DOI: 10.1021/acs.est.4c06434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thin film composite (TFC) polyamide membranes have been widely applied for environmental applications, such as desalination and water reuse. The separation performance of TFC polyamide membranes strongly depends on their nanovoid-containing roughness morphology. These nanovoids not only influence the effective filtration area of the polyamide film but also regulate the water transport pathways through the film. Although there have been ongoing debates on the formation mechanisms of nanovoids, a nanofoaming theory─stipulating the shaping of polyamide roughness morphology by nanobubbles of degassed CO2 and the vapor of volatile solvents─has gained much attention in recent years. In this review, we provide a comprehensive summary of the nanofoaming mechanism, including related fundamental principles and strategies to tailor nanovoid formation for improved membrane separation performance. The effects of nanovoids on the fouling behaviors of TFC membranes are also discussed. In addition, numerical models on the role of nanovoids in regulating the water transport pathways toward improved water permeance and antifouling ability are highlighted. The comprehensive summary on the nanofoaming mechanism in this review provides insightful guidelines for the future design and optimization of TFC polyamide membranes toward various environmental applications.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, P.R. China
| |
Collapse
|
3
|
Zheng P, Jiang L, Zhang Q, Liu Q, Zhu A. Fabrication of polyamide nanofiltration membrane with tannic acid/poly(sodium 4-styrenesulfonate) network-like interlayer for enhanced desalination performance. J Colloid Interface Sci 2024; 662:707-718. [PMID: 38368828 DOI: 10.1016/j.jcis.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
The traditional polyamide composite nanofiltration membranes have high selectivity and low water permeance, so it is necessary to find strategies to raise the permeance. Herein, a novel polyamide nanofiltration membranes with high permeance were fabricated by coating a loose hydrophilic network-like interlayer, where tannic acid (TA) with pentapophenol arm structure binds to poly(4-styrenesulfonate) (PSS) polymer through hydrogen and ionic interactions. The effects of the network-like TA/PSS interlayer on surface morphology, surface hydrophobicity, and the interfacial polymerization mechanism were investigated. The outcomes demonstrated that the TA/PSS interlayer can offer a favorable environment for interfacial polymerization, enhance the hydrophilicity of the substrate membrane, and delay the release of piperazine (PIP). The optimized TFC-2 presents pure water flux of 22.7 ± 2.8 L m-2 h-1 bar-1, Na2SO4 rejection of 97.1 ± 0.5 %, and PA layer thickness of about 38.9 ± 2.5 nm. This provides new strategies for seeking to prepare simple interlayers to obtain high-performance nanofiltration membranes.
Collapse
Affiliation(s)
- Pingyun Zheng
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lina Jiang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
4
|
Liu M, Zhang L, Geng N. Effect of Interlayer Construction on TFC Nanofiltration Membrane Performance: A Review from Materials Perspective. MEMBRANES 2023; 13:membranes13050497. [PMID: 37233558 DOI: 10.3390/membranes13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.
Collapse
Affiliation(s)
- Mingxiang Liu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Nannan Geng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
5
|
Yu H, Xu L, Luo Y, Guo M, Yan X, Jiang X, Yu L. Preparation of highly permeable and selective nanofiltration membranes with antifouling properties by introducing the capsaicin derivative into polyamide thin selective layer by bidirectional interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Sun R, Lv Y, Zhang X, Zhao J, Qian Z, Lan Q, Wang Z, He F, Liu T. Silicification-interlayered nanofiber substrates regulated crumpled ultrathin polyamide nanofilms for highly enhanced nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Xu GR, An ZH, Min-Wang, Ke-Xu, Zhao HL, Liu Q. Polyamide Layer Modulation for PA-TFC Membranes Optimization: Developments, Mechanisms, and Implications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interlayered interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Xu P, Gonzales RR, Hong J, Guan K, Chiao YH, Mai Z, Li Z, Rajabzadeh S, Matsuyama H. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Zhang H, Chen Y, Tang S, Sun H, Li P, Hou Y, Niu QJ. Regulation of interfacial polymerization process based on reversible enamine reaction for high performance nanofiltration membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|