1
|
Wan GZ, Liu J, Chen J. Immobilization of α-Glucosidase on Polyethylene Glycol Diglycidyl Ether-Modified NH 2-MIL-53(Al) for Inhibitory Activity Assay of Traditional Chinese Medicine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4355-4368. [PMID: 39924890 DOI: 10.1021/acs.langmuir.4c05114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Enzyme inhibition-based drug screening is a critical strategy in drug development. However, significant limitations arise from the instability, limited reusability, and narrow applicability of traditional enzyme assays when screening for inhibitors in complex matrices, such as extracts of traditional Chinese medicines (TCMs). A screening strategy was developed that combines capillary electrophoresis (CE) with an enzymatic assay utilizing covalently immobilized α-glucosidase (α-Glu). NH2-MIL-53(Al) was synthesized using a hydrothermal method, serving as a robust support for enzyme immobilization. By employing polyethylene glycol diglycidyl ether (PEGDGE) as a covalent linker, significant enhancements in the stability and reusability of α-Glu were achieved. The immobilized enzyme maintained 77.7% of its initial activity over 10 cycles and displayed a Michaelis-Menten constant of 1.25 mM. Moreover, the inhibition constant and IC50 values for acarbose were determined to be 17.41 μM and 0.46 μM, respectively. Utilizing this immobilized enzyme system, screening of 12 TCMs identified several potent α-Glu inhibitors, including Chebulae Fructus and Curcumae Longae Rhizoma. These results highlight the successful integration of NH2-MIL-53(Al) and PEGDGE in creating a stable and reusable screening platform for enzyme inhibitors. This approach not only advances the field of enzyme immobilization technology but also provides a promising pathway for discovering antidiabetic agents from natural sources.
Collapse
Affiliation(s)
- Guang-Zhen Wan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Meng W, Han X, Han R, Zhang X, Zeng X, Duan J, Luo X. A highly stable electrochemical sensor with antifouling and antibacterial capabilities for mercury ion detection in seawater. Anal Chim Acta 2024; 1309:342685. [PMID: 38772667 DOI: 10.1016/j.aca.2024.342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.
Collapse
Affiliation(s)
- Weichen Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China; Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaochun Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xinchao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Carvalho T, Bártolo R, Pedro SN, Valente BFA, Pinto RJB, Vilela C, Shahbazi MA, Santos HA, Freire CSR. Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardium. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200222 DOI: 10.1021/acsami.3c03874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raquel Bártolo
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sónia N Pedro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno F A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Wang C, Wang H, Li Y, Feng Y, Liu ZQ, Zhao TS, Cao L. Zwitterionic metal-organic frameworks modified polyamide membranes with enhanced water flux and antifouling capacity. CHEMOSPHERE 2022; 309:136684. [PMID: 36195125 DOI: 10.1016/j.chemosphere.2022.136684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Antifouling properties are considered to be crucial parameter to polyamide (PA) composite nanofiltration (NF) membranes for practical applications. In this study, an antifouling material, surface zwitterionization of Metal-organic frameworks (Z-MIL-101 (Cr)) was firstly prepared by decorating zwitterionic polymer onto the MOFs surface. Subsequently, a novel type of MOFs-based hybrid membranes were fabricated via mixing the Z-MIL-101 (Cr) nanoparticle with the organic matrix by interfacial polymerization technique. The most optimal hybrid membrane had a high water permeation of 26 L m-2 h-1 bar-1, which was 2.1 times higher than that pristine PA membrane, while the retention for Na2SO4 was still kept at a considerably high value of 93%. The significant increased water flue can attribute to the existence of water channels generated by the Z-MIL-101 (Cr). More important, the antifouling property of the hybrid membrane was much better than that pristine PA, which was due to the formation of superhydrophilic liquid layer surrounding the zwitterionic groups. The combination of the micropore structure of the MOFs and the excellent antifouling properties of the decorated zwitterionic polymer effectively improved separation performances and antifouling ability, which makes these hybrid membranes promising for water purification.
Collapse
Affiliation(s)
- Chongbin Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Hongchao Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Yongsheng Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Yuanyuan Feng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China.
| | - Zhong Qiu Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, PR China
| | - Tian Sheng Zhao
- State Key Laboratory of High-efficiency Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China
| | - Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Song J, Xu D, Luo X, Han Y, Ding J, Zhu X, Yang L, Li G, Liang H. In-situ assembled amino-quinone network of nanofiltration membrane for simultaneously enhanced trace organic contaminants separation and antifouling properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|