1
|
Liu J, Wu L, Zhao J, Liu X, Wu Y, Wu X, Wang G. Constructing Multi-Interfaced and Vacancy-Rich Cu 1.8S/rGO/Oleylamine Composites Toward Anti-Biofouling Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412835. [PMID: 40109166 DOI: 10.1002/smll.202412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Anti-biofouling performance plays a critical role for marine application of microwave absorption materials (MAMs) to maintain their stable and durable absorption capacity. However, anti-biofouling properties are generally ignored by traditional MAMs that merely pursue strong microwave absorption (MA) capability. Herein, this work reports for the first time the preparation of ternary Cu1.8S/reduced graphene oxide/oleylamine (Cu1.8S/rGO/OLAM) composite integrated with outstanding anti-biofouling properties. Cu1.8S nanoparticles and OLAM films are sequentially generated on rGO by a one-pot solution-phase thermal decomposition method. The copper vacancy defects in Cu1.8S can effectively induce dipole polarization. The surface-coated OLAM layers can not only provide abundant heterogeneous interfaces to induce interfacial polarization, but also improve the hydrophobicity to reduce organism adhesion. Cu1.8S can also release copper ions that damage bacterial and algal cell membranes and induce protein denaturation, contributing to enhancement of anti-biofouling properties. rGO with high conductive loss and a sharp edge can both improve MA and anti-biofouling properties. Consequently, the Cu1.8S/rGO/OLAM composite exhibits a remarkable MA capability, with a minimum reflection loss value of -56.2 dB and an effective absorption bandwidth of 9.68 GHz. Additionally, Cu1.8S/rGO/OLAM composite also shows outstanding anti-biofouling performance with survival rates of bacteria and algae as low as 4% and 35%, respectively.
Collapse
Affiliation(s)
- Jun Liu
- Center for Advanced Studies in Precision Instruments, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Center for New Pharmaceutical Development and Testing of Haikou, Haikou, Hainan, 570228, China
| | - Lihong Wu
- Center for Advanced Studies in Precision Instruments, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Center for New Pharmaceutical Development and Testing of Haikou, Haikou, Hainan, 570228, China
| | - Jinchuan Zhao
- Center for Advanced Studies in Precision Instruments, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Center for New Pharmaceutical Development and Testing of Haikou, Haikou, Hainan, 570228, China
| | - Xiao Liu
- Center for Advanced Studies in Precision Instruments, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Center for New Pharmaceutical Development and Testing of Haikou, Haikou, Hainan, 570228, China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Guizhen Wang
- Center for Advanced Studies in Precision Instruments, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Center for New Pharmaceutical Development and Testing of Haikou, Haikou, Hainan, 570228, China
| |
Collapse
|
2
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
3
|
Liu H, Wang Z, Wang H, Liu Z, Yang J, Zhang H, Liang H, Bai L. Innovative temperature-responsive membrane with an elastic interface for biofouling mitigation in industrial circulating cooling water treatment. WATER RESEARCH 2024; 267:122528. [PMID: 39366326 DOI: 10.1016/j.watres.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
To address the issues of scaling caused by heat and water evaporation in regard to circulating cooling water (CCW), TFC membrane filtration systems have been increasingly considered for terminal treatment processes because of their excellent separation performance. However, membrane biofouling phenomenon significantly hinders the widespread utilization of TFC membranes. In this study, to harness the thermal phenomenon of CCW and establish a stable and durable multifunctional antibiofouling layer, temperature-responsive Pnipam and the spectral antibacterial agent Ag were organically incorporated into commercially available TFC membranes. Biological experimental findings demonstrated that above the lower critical solution temperature (LCST), the contraction of Pnipam molecular chains facilitated the inactivation of bacteria by the antibacterial agent, resulting in an impressive sterilization efficiency of up to 99 %. XDLVO analysis revealed that below the LCST, the establishment of a hydration layer on the functional interface resulted in the creation of elevated energy barriers, effectively impeding bacterial adhesion to the membrane surface. Consequently, a high bacterial release rate of 98.4 % was achieved on the low-temperature surface. The alterations in the functional membrane surface conformation induced by temperature variations further amplified the separation between the pollutants and the membrane, creating an enhanced "elastic interface." This efficient and straightforward cleaning procedure mitigated the formation of irreversible fouling without compromising the integrity of the membrane surface. This study presents a deliberately engineered thermoresponsive antibiofouling membrane interface to address the issue of membrane fouling in membrane-based CCW treatment systems while shedding new light on the mechanisms of "inactivation" and "defense."
Collapse
Affiliation(s)
- Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Liu S, Guo H, Kong Z, Han X, Gao Y, Zhang Y, Daigger GT, Zhang P, Kang J, Yu S, Li G, Song G. Performance improvement and application of copper-based nanomaterials in membrane technology for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122755. [PMID: 39378812 DOI: 10.1016/j.jenvman.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Membrane fouling, including organic, inorganic, and biological fouling, poses enormous challenges in membrane water treatment. Incorporation of copper-based nanomaterials in polymeric membranes is highly favored due to their exceptional antibacterial properties and capacity to improve membrane hydrophilicity. This review extensively explores the utilization of copper-based nanomaterials in membrane technology for water treatment, with a specific focus on enhancing anti-fouling performance. It elaborates on how copper-based nanomaterials improve the surface properties of membrane materials (such as porosity, hydrophilicity, surface charge, etc.) through physical and chemical processes. It summarizes the properties and potential antibacterial mechanisms of copper-based nanomaterials, primarily by disrupting microbial cell structures through the generation of reactive oxygen species (ROS). Furthermore, recent efforts to enhance the environmental sustainability, cost-effectiveness, and recyclability of copper-based nanomaterials are outlined. The attempts to offer insights for the advancement of anti-fouling practices in water treatment through the use of copper-modified polymer membranes.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Shuchun Yu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Aminu TQ, Juybari HF, Warsinger DM, Bahr DF. Electroless Deposition for Robust and Uniform Copper Nanoparticles on Electrospun Polyacrylonitrile (PAN) Microfiltration Membranes. MEMBRANES 2024; 14:198. [PMID: 39330539 PMCID: PMC11434320 DOI: 10.3390/membranes14090198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Filtration membranes coated in metals such as copper have dramatically improved biofouling resistance and pathogen destruction. However, existing coating methods on polymer membranes impair membrane performance, lack uniformity, and may detach from their substrate, thus contaminating the permeate. To solve these challenges, we developed the first electroless deposition protocol to immobilize copper nanoparticles on electrospun polyacrylonitrile (PAN) fibers for the design of antimicrobial membranes. The deposition was facilitated by prior silver seeding. Distinct mats with average fiber diameters of 232 ± 36 nm, 727 ± 148 nm and 1017 ± 80 nm were evaluated for filtration performance. Well-dispersed copper nanoparticles were conformal to the fibers, preserving the open-cell architecture of the membranes. The copper particle sizes ranged from 20 to 140 nm. Infrared spectroscopy revealed the PAN fiber mats' relative chemical stability/resistance to the copper metallization process. In addition, the classical cyclization of the cyano functional group in PAN was observed. For model polystyrene beads with average sizes of 3 μm, Cu NP-PAN fiber mats had high water flux and separation efficiency with negligible loss of Cu NP from the fibers during flow testing. Fiber size increased flux and somewhat decreased separation efficiency, though the efficiency values were still high.
Collapse
Affiliation(s)
- Temitope Q. Aminu
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hamid Fattahi Juybari
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - David M. Warsinger
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - David F. Bahr
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Chen Y, Yu W, Cao H. Arginine-Functionalized Thin Film Composite Forward Osmosis Membrane Integrating Antifouling and Antibacterial Effects. MEMBRANES 2023; 13:760. [PMID: 37755182 PMCID: PMC10534298 DOI: 10.3390/membranes13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Membrane fouling is an inevitable obstacle of polyamide composite forward osmosis (FO) membranes in oily wastewater treatment. In this study, zwitterionic arginine (Arg) is grafted onto nascent self-made FO polyamide poly(ether sulfone) (PA-PES) membrane, imparting superior hydrophilic, antifouling, and antibacterial properties to the membrane. Detailed characterizations revealed that the Arg-modified (Arg-PES) membrane presented obviously surface positively charged and unique morphology. Results showed that our strategy endowed the optimized membrane, the water flux increased by 113.2% compared to the pristine membrane, respectively, meanwhile keeping high NaCl rejection > 93.9% (with DI water as feed solution and 0.5 M NaCl as draw solution, FO mode). The dynamic fouling tests indicated that the Arg-PES membranes exhibited much improved antifouling performance towards oily wastewater treatment. The flux recovery ratios of the membrane were as high as 92.0% for cationic emulsified oil (cetyl pyridinium chloride, CPC), 87.0% for neutral emulsified oil (Tween-80), and 86.0% for anionic emulsified oil (sodium dodecyl sulfate, SDS) after washing, respectively. Meanwhile, the Arg-PES membranes assembled with guanidine cationic groups exhibited an enhanced antibacterial property against E. coli, which exhibited a high antibacterial efficiency of approximately 96%. Consequently, the newly arginine functionalized FO membrane possesses impressive antifouling performance, while simultaneously resisting bacterial invasion, thus rendering it an ideal alternative for oily wastewater treatment in the FO process.
Collapse
Affiliation(s)
- Yichen Chen
- School of Environment, Renmin University of China, Beijing 100872, China;
| | - Wenmeng Yu
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
| | - Hu Cao
- School of Environment, Renmin University of China, Beijing 100872, China;
| |
Collapse
|
8
|
Mi YF, Liu JL, Xia W, He SH, Shentu BQ. In Situ Formation of Silver Nanoparticles Induced by Cl-Doped Carbon Quantum Dots for Enhanced Separation and Antibacterial Performance of Nanofiltration Membrane. MEMBRANES 2023; 13:693. [PMID: 37623754 PMCID: PMC10456382 DOI: 10.3390/membranes13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Polyamide (PA) nanofiltration (NF) membranes suffer from biofouling, which will deteriorate their separation performance. In this study, we proposed a strategy to incorporate silver nanoparticles (Ag NPs) into PA NF membranes in situ, in order to simultaneously enhance water permeability and antibacterial performance. The chloride-doped carbon quantum dots (Cl-CQDs) with photocatalytic performance were pre-embedded in the PA selective layer. Under visible light irradiation, the photogenerated charge carriers generated by Cl-CQDs rapidly transported to silver ions (Ag+ ions), resulting in the in situ formation of Ag NPs. The proposed strategy avoided the problem of aggregating Ag NPs, and the amount of Ag NPs on the membrane surfaces could be easily tuned by changing silver nitrate (AgNO3) concentrations and immersion times. These uniformly dispersed Ag NPs increased membrane hydrophilicity. Thus, the obtained thin film nanocomposite Ag NPs (TFN-Ag) membrane exhibited an improved water flux (31.74 L m-2 h-1), which was ~2.98 times that of the pristine PA membrane; meanwhile, the sodium sulfate (Na2SO4) rejection rate was 96.11%. The sterilization rates of the TFN-Ag membrane against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 99.55% and 99.52%, respectively. Thus, this facile strategy simultaneously improved the permeability and antibacterial property of PA NF membranes.
Collapse
Affiliation(s)
- Yi-Fang Mi
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Shenlan New Material Technology Co., Ltd., Jiandei 311606, China
| | - Jia-Li Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wen Xia
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shu-Heng He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bao-Qing Shentu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
9
|
Armendáriz-Ontiveros MM, Villegas-Peralta Y, Madueño-Moreno JE, Álvarez-Sánchez J, Dévora-Isiordia GE, Sánchez-Duarte RG, Madera-Santana TJ. Modification of Thin Film Composite Membrane by Chitosan-Silver Particles to Improve Desalination and Anti-Biofouling Performance. MEMBRANES 2022; 12:membranes12090851. [PMID: 36135870 PMCID: PMC9505310 DOI: 10.3390/membranes12090851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 05/26/2023]
Abstract
Reverse osmosis (RO) desalination is a technology that is commonly used to mitigate water scarcity problems; one of its disadvantages is the bio-fouling of the membranes used, which reduces its performance. In order to minimize this problem, this study prepared modified thin film composite (TFC) membranes by the incorporation of chitosan-silver particles (CS-Ag) of different molecular weights, and evaluated them in terms of their anti-biofouling and desalination performances. The CS-Ag were obtained using ionotropic gelation, and were characterized by Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The modified membranes were synthetized by the incorporation of the CS-Ag using the interfacial polymerization method. The membranes (MCS-Ag) were characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and contact angle. Bactericidal tests by total cell count were performed using Bacillus halotolerans MCC1, and anti-adhesion properties were confirmed through biofilm cake layer thickness and total organic carbon (%). The desalination performance was defined by permeate flux, hydraulic resistance, salt rejection and salt permeance by using 2000 and 5000 mg L-1 of NaCl. The MCS-Ag-L presented superior permeate flux and salt rejection (63.3% and 1% higher, respectively), as well as higher bactericidal properties (76% less in total cell count) and anti-adhesion capacity (biofilm thickness layer 60% and total organic carbon 75% less, compared with the unmodified membrane). The highest hydraulic resistance value was for MCS-Ag-M. In conclusion, the molecular weight of CS-Ag significantly influences the desalination and the antimicrobial performances of the membranes; as the molecular weight decreases, the membranes' performances increase. This study shows a possible alternative for increasing membrane useful life in the desalination process.
Collapse
Affiliation(s)
| | - Yedidia Villegas-Peralta
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Julia Elizabeth Madueño-Moreno
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Jesús Álvarez-Sánchez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - German Eduardo Dévora-Isiordia
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | - Reyna G. Sánchez-Duarte
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Mexico
| | | |
Collapse
|